Representing Periodic Functions in a Fourier Basis

Nick McGreivy

May 2020

1 1D Sine and Cosine Transforms

Suppose we have a function $x(\theta)$ which is periodic in 2π . Suppose we want to find a new representation for $x(\theta)$, namely a Fourier series mapping new values of θ to a new value of x. The form of this Fourier series is

$$
x(\theta) = \sum_{m=0}^{N_F} X_m^c \cos(m\theta) + X_m^s \sin(m\theta)
$$

where the number of Fourier components tells us about the resolution of the function $x(\theta)$. To write $x(\theta)$ in this Fourier basis, we need to compute the coefficients X_m^c and X_m^s . We can do this using the inverse transforms

$$
X_0^c = \frac{1}{N_\theta} \sum_{i=1}^{N_\theta} x(\theta_i)
$$

$$
X_0^s = 0
$$

$$
X_m^c = \frac{2}{N_\theta} \sum_{i=1}^{N_\theta} x(\theta_i) \cos(m\theta_i)
$$

$$
X_m^s = \frac{2}{N_\theta} \sum_{i=1}^{N_\theta} x(\theta_i) \sin(m\theta_i)
$$

where $\theta_i = \frac{i}{2\pi N_\theta}$.

Note that the zeroth component of the Cosine component is just the average of $x(\theta)$ over the dataset.

1.1 Proof of inverse transform

Of course, we need to convince ourselves that the inverse transform I've written down is consistent with our representation of $x(\theta)$. To do this I'll plug in $x(\theta_i)$ and show that all the other terms vanish besides the coefficient. We start with X_0^c .

$$
X_0^c = \frac{1}{N_\theta} \sum_{i=1}^{N_\theta} \sum_{m=0}^{N_F} X_m^c \cos\left(\frac{mi}{2\pi N_\theta}\right) + X_m^s \sin\left(\frac{mi}{2\pi N_\theta}\right)
$$

The sum of Cosine and Sin over equally spaced intervals gives zero for all m except $m = 0$, where $cos(0) = 1$ and $sin(0) = 0$. Taking only the $m = 0$ term, we have

$$
X_0^c = \frac{1}{N_{\theta}} \sum_{i=1}^{N_{\theta}} X_0^c = X_0^c
$$

This proves that our inverse transform for X_0^c gives us the correct transform. Although I have chosen $X_0^s = 0$, since $\sin(0) = 0$, in reality any value of X_0^s could have been chosen since it plays no role in the transform.

Let's now show that our choices of X_m^c and X_m^s give us the correct inverse transforms.

$$
X_m^c = \frac{2}{N_\theta} \sum_{i=1}^{N_\theta} \sum_{m'=0}^{N_F} X_{m'}^c \cos(m'\theta_i) \cos(m\theta_i) + \cos(m'\theta_i) \sin(m\theta_i)
$$

$$
X_m^s = \frac{2}{N_{\theta}} \sum_{i=1}^{N_{\theta}} \sum_{m'=0}^{N_F} X_{m'}^c \sin(m'\theta_i) \cos(m\theta_i) + \sin(m'\theta_i) \sin(m\theta_i)
$$

Each of the terms where Sine multiplies Cosine vanishes in the sum over i . Each of the terms where Cosine multiplies Cosine and Sin multiplies Sine vanishes, unless $m = m'$, in which case the function averages to $1/2$.

$$
X_m^c = \frac{2}{N_\theta} \sum_{i=1}^{N_\theta} \sum_{m'=0}^{N_F} X_{m'}^c \cos(m'\theta_i) \cos(m\theta_i) \delta_{m,m'} = \frac{2}{N_\theta} \sum_{i=1}^{N_\theta} \sum_{m'=0}^{N_F} X_m^c \frac{1}{2} = X_m^c
$$

$$
X_m^s = \frac{2}{N_{\theta}} \sum_{i=1}^{N_{\theta}} X_m^c \sin(m' \theta_i) \sin(m \theta_i) \delta_{m,m'} = \frac{2}{N_{\theta}} \sum_{i=1}^{N_{\theta}} X_m^s \frac{1}{2} = X_m^s
$$

This proves that we have chosen the correct inverse transforms.

2 2D Sine and Cosine Transforms

Now suppose we have a 2D function $x(\zeta, \theta)$ which is periodic in 2π in both variables. Suppose we want to find a new representation for $x(\zeta, \theta)$, namely a Fourier series mapping new values of (ζ, θ) to a new value of x. The form on this Fourier series is

$$
x(\zeta,\theta) = \sum_{m=0}^{N_{F\zeta}} \sum_{n=0}^{N_{F\theta}} X_{m,n}^{cc} \cos(m\zeta) \cos(n\theta) + X_{m,n}^{cs} \cos(m\zeta) \sin(n\theta) + X_{m,n}^{sc} \sin(m\zeta) \cos(n\theta) + X_{m,n}^{sc} \sin(m\zeta) \sin(n\theta)
$$

To write $x(\zeta, \theta)$ in this Fourier basis, we need to compute the coefficients $X_{m,n}^{cc}, X_{m,n}^{cs}, X_{m,n}^{sc}$, and $X_{m,n}^{ss}$. We can do this using the inverse transforms

$$
X_{0,0}^{cc} = \frac{1}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j)
$$

$$
X_{0,0}^{cs} = X_{0,0}^{sc} = X_{0,0}^{ss} = 0
$$

$$
X_{0,n}^{cc} = \frac{2}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \cos(n\theta_j)
$$

$$
X_{0,n}^{cs} = \frac{2}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \sin(n\theta_j)
$$

$$
X_{0,n}^{sc} = X_{0,n}^{ss} = 0
$$

$$
X_{m,0}^{cc} = \frac{2}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \cos(m\zeta_i)
$$

$$
X_{m,0}^{sc} = \frac{2}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \sin(m\zeta_i)
$$

$$
X_{m,0}^{cs} = X_{m,0}^{ss} = 0
$$

$$
X_{m,n}^{cc} = \frac{4}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \cos(m\zeta_i) \cos(n\theta_j)
$$

$$
X_{m,n}^{cs} = \frac{4}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \cos(m\zeta_i) \sin(n\theta_j)
$$

$$
X_{m,n}^{sc} = \frac{4}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \sin(m\zeta_i) \cos(n\theta_j)
$$

$$
X_{m,n}^{ss} = \frac{4}{N_{\zeta} N_{\theta}} \sum_{i=1}^{N_{\zeta}} \sum_{j=1}^{N_{\theta}} x(\zeta_i, \theta_j) \sin(m\zeta_i) \sin(n\theta_j)
$$

where $\zeta_i = \frac{i}{2\pi N_{\zeta}}$ and $\theta_j = \frac{j}{2\pi N_{\theta}}$.

We can prove that these are the correct inverse transforms by plugging in our Fourier series for $x(\zeta, \theta)$ and using the orthogonality of Sines and Cosines like we did in the 1D case.