
Finite-Build Stellarator Coil Design & Automatic
Differentiation

Nick McGreivy1,2 Stuart Hudson1 Caoxiang Zhu1

1Princeton Plasma Physics Laboratory

2PhD Candidate
Program in Plasma Physics

Princeton University

Coffee & Chalk
July 16th 2020

white

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 1 / 38

Derivatives have been used in stellarator coil design for
optimization and sensitivity analysis

For example:
D.J. Strickler, L.A. Berry, & S.P. Hirshman (2002). Designing coils for compact stellarators Fusion Sci. Technology.

T. Brown, J. Breslau, D. Gates, N. Pomphrey, & A. Zolfaghari (2015). IEEE 26th Symp. on Fusion Engineering.

Caoxiang Zhu, Stuart R. Hudson, Yuntao Song, & Yuanxi Wan (2017). New method to design stellarator coils without
the winding surface Nuclear Fusion.

Caoxiang Zhu, Stuart R Hudson, Samuel A Lazerson, Yuntao Song, & Yuanxi Wan (2018). Hessian matrix approach for
determining error field sensitivity to coil deviations Plasma Physics and Controlled Fusion.

Caoxiang Zhu, Stuart R Hudson, Yuntao Song, & Yuanxi Wan (2018). Designing stellarator coils by a modified Newton
method using FOCUS Plasma Physics and Controlled Fusion.

E.J. Paul, M. Landreman, A. Bader, & W. Dorland (2018). An adjoint method for gradient-based optimization of
stellarator coil shapes Nuclear Fusion.

Matt Landreman & Elizabeth Paul (2018). Computing local sensitivity and tolerances for stellarator physics properties
using shape gradients Nuclear Fusion.

Hudson, S., Zhu, C., Pfefferle, D., & Gunderson, L. (2018). Differentiating the shape of stellarator coils with respect to
the plasma boundary Physics Letters. A.

Caoxiang Zhu, David A. Gates, Stuart R. Hudson, Haifeng Liu, Yuhong Xu, Akihiro Shimizu, & Shoichi Okamura
(2019). Identification of important error fields in stellarators using the Hessian matrix method Nuclear Fusion.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 2 / 38

We can compute derivatives three ways

1. Finite-difference derivatives (numerical derivatives)

For an N-dimensional function, finite-difference requires N + 1
function evaluations to get the N-dimensional gradient

Inexact due to truncation and round-off errors

Simple

2. Analytic derivatives

Either computed by hand or with symbolic differentiation

Needs to be programmed by a human

Efficient

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 3 / 38

We can compute derivatives three ways

1. Finite-difference derivatives (numerical derivatives)

For an N-dimensional function, finite-difference requires N + 1
function evaluations to get the N-dimensional gradient

Inexact due to truncation and round-off errors

Simple

2. Analytic derivatives

Either computed by hand or with symbolic differentiation

Needs to be programmed by a human

Efficient

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 3 / 38

3. Automatic Differentiation (AD)
Also known as algorithmic differentiation or computational differentiation

Automatic Differentiation (AD) is a technology for automatically
computing the exact numerical derivatives of any differentiable
function y = f (x), including arbitrarily complex simulations,
represented by a computer program.

To compute automatic derivatives of a function, you need to program
that function using an AD software tool.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 4 / 38

This is a talk in two parts

Organization of talk

Part I: Finite-build coil design & results (15 minutes)

Part II: Discussion of automatic differentiation

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 5 / 38

Part I:
Finite-build coil design & results

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 6 / 38

FOCUSADD: FOCUS with AD and finite-builD

FOCUS (C. Zhu, S. R. Hudson, Y. Song, Y. Wan 2017)

FOCUSADD (N. McGreivy, S. R. Hudson, C.Zhu 2020)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 7 / 38

Stellarator Coil Design as an Optimization Problem

Choose the coil parameters p which minimize an objective function f
which measures the deviation between target magnetic field and the

magnetic field that your coils actually produce.

p∗ = arg min
p

f (p)

This objective function traditionally includes the quadratic flux of B on a
surface S :

f (p) =

∫
S

(
B(p) · n̂

)2
dA + Regularization term(s)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 8 / 38

FOCUS: Coil Design Code

Represent coils as closed filamentary curves in space. B is given by the
biot-savart law, and f is minimized using a gradient-based optimization

method.

x i (θ) =

NF−1∑
m=0

X i
cm cos(mθ) + X i

sm sin(mθ)

y i (θ) =

NF−1∑
m=0

Y i
cm cos(mθ) + Y i

sm sin(mθ)

z i (θ) =

NF−1∑
m=0

Z i
cm cos(mθ) + Z i

sm sin(mθ)

(C. Zhu, S. R. Hudson, Y. Song, Y. Wan 2017)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 9 / 38

Motivation: How much does including finite coil thickness
change optimized coils?

Deviations in B are second-order in the coil thickness

A simple calculation (not shown) shows that for a coil of thickness δ a distance L
from the plasma, the change in magnetic field δB is of order δ2

/L2.

δB ∼ δ2

L2

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 10 / 38

Multi-filament approximation to coil winding pack

Real coils are wound in a so-called ‘winding pack’.

One option: ‘multi-filament’ approximation to the coil winding pack. The
filaments are placed on a grid defined by a choice of frame surrounding the coil

centroid, and the rotation angle α(θ) is parametrized with a Fourier series in
poloidal angle θ.

αi (θ) =

NFR−1∑
m=0

Ai
cm cos (mθ) + Ai

sm sin (mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 11 / 38

Optimizing rotation profile of finite-build coils: HSX
Work done by Wisconsin group

No Rotation Some Regularization No Regularization

white

L. Singh, T. Kruger et al., Optimization of Finite-build Stellarator Coils
(Accepted to JPP)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 12 / 38

Finite-build coils with FOCUSADD

FOCUSADD efficiently optimizes two quantities

FOCUS optimizes the filamentary coil centroid positions x i (θ), y i (θ), and z i (θ). The
Wisconsin group optimizes the rotation profile αi (θ) around the coil centroid.
FOCUSADD optimizes both quantities at once.

Optimized finite-build coils for rotating elliptical stellarator, with no rotation (left) and no regularization (right).

Would anyone ever build this?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 13 / 38

How much do coil positions shift with finite build?

||∆r ||1 ≡ the L1 norm of the difference between the positions of the centroid of
the filamentary optimized coils and the centroid of the finite-build optimized coils.

W7-X coil dimensions: 17.8 by 21.2cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 14 / 38

What is the effect on the quadratic flux?

∆f ≡ the difference between the quadratic flux of finite-build coils which are
optimized using a filamentary approximation, and the quadratic flux of finite-build

coils which are optimized for their finite-build.

W7-X coil dimensions: 17.8 by 21.2cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 15 / 38

Does finite-build matter?

Coil centroids for optimized filamentary and finite-build (no rotation) w7x coils.

||∆r ||1 = 2.6mm

∆f =
1.45− .45

.45
= 240%

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 16 / 38

In conclusion, finite-build is important when

Coil tolerances are small

Coil-plasma distance is small

Coils are large

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 17 / 38

Part II:
Discussion of automatic

differentiation (AD)

A functional viewpoint

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 18 / 38

Taking a derivative

Primitive operations

The functions A, B, C , and D should be understood as “primitive operations”. These
could be simple primitives like sin , exp , div , etc, but they could also be

complicated primitives like fft , odeint , solve or even custom primitives like

nicksfunc .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 19 / 38

Taking a derivative

Primitive operations

The functions A, B, C , and D should be understood as “primitive operations”. These
could be simple primitives like sin , exp , div , etc, but they could also be

complicated primitives like fft , odeint , solve or even custom primitives like

nicksfunc .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 19 / 38

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 20 / 38

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 20 / 38

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. Pushforward tangent vectors.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. Pullback cotangent vectors.

From Jacobians to gradients

Often we want the gradient of a scalar function F : Rn → R, which we can
get by setting vT = [1.0].

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 21 / 38

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. Pushforward tangent vectors.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. Pullback cotangent vectors.

From Jacobians to gradients

Often we want the gradient of a scalar function F : Rn → R, which we can
get by setting vT = [1.0].

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 21 / 38

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. Pushforward tangent vectors.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. Pullback cotangent vectors.

What makes it “automatic”?
The key is that your AD library knows the Jacobian of each primitive operation.
This allows it to pushforward/pullback tangent/cotangent vectors for each
primitive and compute the total JVP/VJP.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 22 / 38

Why is AD useful?

1. Simplicity

Finding analytic derivatives is time-consuming and often hard.

Programming those derivatives is time-consuming.

AD removes these steps.

2. Ideal for gradient-based optimization

For a scalar function f : Rn → R which has time-complexity O(T),
reverse mode AD computes the gradient in time O(T). This is as
efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 23 / 38

Why is AD useful?

1. Simplicity

Finding analytic derivatives is time-consuming and often hard.

Programming those derivatives is time-consuming.

AD removes these steps.

2. Ideal for gradient-based optimization

For a scalar function f : Rn → R which has time-complexity O(T),
reverse mode AD computes the gradient in time O(T). This is as
efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 23 / 38

Why is AD useful?

1. Simplicity

Finding analytic derivatives is time-consuming and often hard.

Programming those derivatives is time-consuming.

AD removes these steps.

2. Ideal for gradient-based optimization

For a scalar function f : Rn → R which has time-complexity O(T),
reverse mode AD computes the gradient in time O(T). This is as
efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 23 / 38

Properties of a great AD library

Feels like native programming

Intuitive API

Full set of primitive operations implemented

Efficient linear algebra (modern implementations wrap Eigen, numpy,
or JIT-compile)

Control flow support (loops, if statements, recursion)

Forward and reverse

Higher-order derivatives

GPU support

Checkpointing

Differentiation through linear, non-linear solves with the adjoint
method

User-defined primitives

MPI parallelization

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 24 / 38

AD libraries for scientific computing

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 25 / 38

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

AD in machine learning
A few examples

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 26 / 38

AD in machine learning
A few examples

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 26 / 38

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 27 / 38

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 27 / 38

Stan Math Library (C++)

The Stan Math Library is a C++ template library for automatic
differentiation of any order using forward, reverse, and mixed modes. It
includes a range of built-in functions for probabilistic modeling, linear

algebra, and equation solving.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 28 / 38

Comparison between JAX and Stan

Coming next week. . .

Preview

JAX has nearly everything you might want from an AD library for scientific
computing, except it implements SPMD parallelization (which is useful in
ML) rather than MPI parallization. Stan Math Library isn’t quite as easy
to use as JAX, but seems to have implemented MPI as well as many (but
not all) of the desireable features of JAX. Stan may have fewer primitives
implemented.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 29 / 38

Checkpointing

The problem with reverse mode AD

In order to compute a vector-Jacobian product (VJP) backwards, the data
to calculate each primitive VJP much be stored in memory. Storing the
data from every single primitive operation cause very large memory
requirements for large computations.

Checkpointing is a method to reduce memory requirements in exchange
for increased runtime. It works by storing “checkpoints” at various points
in the program and recomputing the data between checkpoints that would

otherwise be stored in memory.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 30 / 38

Checkpointing

Our example function can be visualized as a graph:

Suppose we have a function which looks like this:

Let’s use checkpointing to reduce the memory from the part of the
computation in the purple boxes. We place checkpoints to the left of the

purple boxes and recompute the functions in the purple boxes on the
backwards pass.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 31 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= λT

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 32 / 38

AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 33 / 38

AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 33 / 38

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 34 / 38

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 34 / 38

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 35 / 38

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 35 / 38

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
− λT ∂g

∂p
where

(
∂g
∂u

)T

λ =
∂f

∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 35 / 38

Automatically generating adjoint equations

What is an adjoint equation?

The adjoint equation is the equation which defines the derivative of a given
mathematical equation. For example: the adjoint equation for the linear
system AΦ = b was shown to be ATλ = ∂f/∂Φ, and the adjoint equation
for the nonlinear system g = 0 was shown to be (∂g/∂u)Tλ = ∂f/∂u

It’s also possible to setup and solve adjoint equations for the solution of
ODEs and PDEs. (Details coming next week. . .)

Another perspective on AD

AD libraries know how to setup and solve adjoint equations for each
primitive operation in the library.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 36 / 38

dolfin-adjoint

The dolfin-adjoint project automatically derives the discrete adjoint and tangent linear
models from a forward model written in the Python interface to FEniCS and Firedrake.

FEniCS is a popular open-source (LGPLv3) computing platform for solving partial
differential equations (PDEs). FEniCS enables users to quickly translate scientific

models into efficient finite element code.

Firedrake is an automated system for the solution of partial differential equations using
the finite element method (FEM).

dolfin-adjoint is not an AD library!

dolfin-adjoint is similar to an AD library, but operates at a much higher level of
abstraction. It works because it focuses only on FEM code.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 37 / 38

Summary

Automatic differentiation allows the efficient computation of
derivatives in stellarator coil design. This has allowed the
development of a new finite-build coil design code, FOCUSADD.

Accounting for the finite build of coils is important when coil
tolerances are small, when the coil-plasma distance is small, and/or
when coil thicknesses are large.

Automatic differentiation libraries know how to setup and solve
adjoint equations for each primitive operation in the library.

Primitive operations can be composed together arbitrarily to push
forward tangent vectors to compute Jacobian-vector products or pull
back cotangent vectors to compute vector-Jacobian products.

Thank you

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 38 / 38

Additional Slides

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 39 / 38

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 40 / 38

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 40 / 38

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 40 / 38

AD in machine learning (ML):

A 2009 blog post made a convincing argument that ML researchers should
use AD.

Criticisms of blog post:

Computing derivatives distracts from what the field actually wants to
accomplish.

Valuable researcher time is wasted.

Leads to preference for functions they are capable of manually
deriving gradients for.

AD was eventually fully adopted by the ML community.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 41 / 38

https://justindomke.wordpress.com/2009/02/17/automatic-differentiation-the-most-criminally-underused-tool-in-the-potential-machine-learning-toolbox/

Structure of FOCUSADD (1 of 6)

Coil centroid is parametrized in free space with a Fourier series, as in
FOCUS. Here ri (θ) is the position of the i coil centroid.

x i (θ) =

NF−1∑
m=0

X i
cm cos(mθ) + X i

sm sin(mθ)

y i (θ) =

NF−1∑
m=0

Y i
cm cos(mθ) + Y i

sm sin(mθ)

z i (θ) =

NF−1∑
m=0

Z i
cm cos(mθ) + Z i

sm sin(mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 42 / 38

Structure of FOCUSADD (2 of 6)

The multi-filament winding pack surrounds the coil centroid. For the ith
coil, the axes of the winding pack v i

1 and v i
2 are rotated by an angle αi

relative to the normal N i and binormal B i vectors. The normal vector is
defined as the component perpendicular to the tangent of the vector from

the coil center-of-mass to the local point.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 43 / 38

Structure of FOCUSADD (3 of 6)

α is parametrized by another Fourier series, giving the coil the freedom to
twist in space.

αi (θ) =
NRθ

2
+

NFR−1∑
m=0

Ai
cm cos (mθ) + Ai

sm sin (mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 44 / 38

Structure of FOCUSADD (4 of 6)

Once we have v i
1 and v i

2, we can compute the position of the Nn × Nb

filaments for each coil. We do this using the following formula for the nth
and bth filaments, where n runs from 0 to Nn − 1 and b runs from 0 to
Nb − 1. Here, ln is the spacing between the filaments in the v1 direction,

and lb is the spacing between the filaments in the v2 direction.

r i
n,b(θ) = r i

central +
[
n − Nn − 1

2

]
lnv i

1(θ) +
[
b − Nb − 1

2

]
lbv i (θ)

So far we’ve only computed vacuum fields, using the Biot-Savart law.

B(r) =
Nc∑
i=1

N1∑
n=1

N2∑
b=1

µ0I
i
n,b

∮
d l i

n,b × (r − r i
n,b)

|r − r i
n,b|3

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 45 / 38

Structure of FOCUSADD (5 of 6)

The optimization is performed using gradient descent on an objective
function ftotal , given by a sum of physics objectives and engineering

objectives.

ftotal (p) = fPhys(p) + λEng fEng (p)

The simplest possible physics objective was chosen, the squared
surface-normal magnetic field integrated over the surface.

fPhys ≡
∫

S
(B · n)2dA

A simple engineering objective was chosen, namely the total length of the
coils.

fEng ≡
N∑

i=1

Li

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 46 / 38

Structure of FOCUSADD (6 of 6)

The following computational graph describes the structure of the
computation performed by FOCUSADD. In my AD tool (JAX), I simply

compute ftotal , then type “grad” to get the gradient.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 47 / 38

Important facts about AD

Suppose y = f (x), where x ∈ Rn and y ∈ Rm. Then first-order AD
computes the numerical value of the Jacobian ∂y

∂x at a particular value
of x .

Suppose f takes time T to compute.

Forward mode AD computes the Jacobian of f in time O(nT).

Reverse mode AD computes the Jacobian of f in time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 48 / 38

How does AD work?

Step 1: Compute function

The AD tool computes the function f , one elementary operation at a time.
A representation of the ‘computational graph’ is built.

f (x , y) = sin(xy) + x2/y

Step 2: Compute derivatives in the reverse order

Compute the derivative of the output of f with respect to each variable vi

by traversing the graph in reverse order. This is exactly the chain rule,
applied in a clever way.

∂f

∂vi
=

∑
j∈children

of i

∂f

∂vj

∂vj

∂vi

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 49 / 38

The details

Step 1:

x = 2.0
y = 3.0
v1 = x ∗ y = 6.0
v2 = sin(v1) = −0.297
v3 = x2 = 4.0
v4 = v3/y = 1.333
f = v2 + v4 = 1.054

Step 2:

∂f
∂f = 1.0
∂f
∂v4

= 1.0
∂f
∂v3

= ∂f
∂v4

∂v4
∂v3

= 0.333
∂f
∂v2

= 1.0
∂f
∂v1

= ∂f
∂v2

∂v2
∂v1

= 0.960

Step 2, continued:

∂f
∂y = ∂f

∂v1

∂v1
∂y + ∂f

∂v4

∂v4
∂y

∂f
∂y = 1.476
∂f
∂x = ∂f

∂v3

∂v3
∂x + ∂f

∂v1

∂v1
∂x

∂f
∂x = 4.214

f (x , y) = sin(xy) + x2/y

∂f

∂vi
=

∑
j∈children

of i

∂f

∂vj

∂vj

∂vi

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 50 / 38

Deviations in the magnetic field are second-order in the
coil thickness divided by the coil-plasma distance

Suppose we have a coil carrying current in the y -direction with thickness δ
a distance L away from our plasma.

Biot-Savart:
dBz

d`y
= −µ0Iy

4π

∫ δ/2

−δ/2

dx

(L + x)2

dBz ≈ −
µ0Iyd`y

4πL2

∫ δ/2

−δ/2
(1−

�
�
��
0

2x

L
+

3x2

L2
)dx ≈ dBfilament(1 +

δ2

4L2
)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 51 / 38

Analytic magnetic fields for circular coils

From Static and Dynamic Electricity (1950) by W.R. Smythe, p. 270-271,
we have

where K (k) and E (k) are complete elliptic integrals of the first and second
kind and k2 ≡ 4aρ/[(a + ρ)2 + z2]. In the plane of the coil, we have z = 0

and Bρ = 0, giving

Bz =
µ0I

2π(a + ρ)

[
K (k) +

a + ρ

a− ρ
E (k)

]

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 52 / 38

Taylor expand in the z = 0 plane

Bz =
µ0I

2π(a + ρ)

[
K (k) +

a + ρ

a− ρ
E (k)

]
We can rewrite this in terms of ε ≡ ρ/a and use ε as an expansion

parameter.

Bz =
µ0I

2πa

[
1

1 + ε
K (k) +

1

1− ε
E (k)

]
k2 =

4ε

(1 + ε)2

Since k2 is small, we can use K (k) = π
2 (1 + 1

4k
2 + 9

64k
4 + . . .) and

E (k) = π
2 (1− 1

4k
2 − 3

64k
4 − . . .). Working out the expansion gives us

Bz ≈
µ0I

2πa

[
1 +

3ε2

4
+

45ε4

64

]
Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 53 / 38

How good of an approximation is this?

Bz ≈
µ0I

2a

[
1 +

3ε2

4
+

45ε4

64

]

This approximation is robust for ε = ρ/a / 0.6.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 54 / 38

From filamentary coils to finite-build coils

Suppose our coil is an annulus of radius R and
thickness δ carrying total current I with constant
volumetric current density. Then the magnetic field at
z = 0 and radius ρ is an integral over dBz from
r = R − δ/2 to r = R + δ/2.

Bz ≈
µ0I

2Rδ

∫ r=R+δ/2

r=R−δ/2

(
1 +

3x2

4
+

45x4

64

)
dr

Expanding this integral in δ/R, to lowest order this is

Bz ≈
µ0I

2R

[
1 +

3ρ2

4R2

(
1 +

δ2

4R2

)
+

45ρ4

64R4

(
1 +

5δ2

6R2

)]

Nick McGreivy (PPPL) Stellarator Coil Design with AD Coffee & Chalk 55 / 38

