
Finite-Build Stellarator Coil Design & Automatic
Differentiation

Nick McGreivy1,2 Stuart Hudson1 Caoxiang Zhu1

1Princeton Plasma Physics Laboratory

2PhD Candidate
Program in Plasma Physics

Princeton University

July 24th 2020

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 1 / 34

Automatic Differentiation (AD)
Also known as algorithmic differentiation or computational differentiation

Automatic Differentiation (AD) is a technology for automatically
computing the exact numerical derivatives of any differentiable
function y = f (x), including arbitrarily complex simulations,
represented by a computer program.

To compute automatic derivatives of a function, you need to program
that function using an AD software tool.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 2 / 34

A preview

Part I: Finite-build coil design & results
FOCUSADD is a new finite-build coil design code using AD.

Finite-build can be important when coil tolerances are small and/or
when coils are large.

Part II: Discussion of AD
AD can be understood as (i) Compositions of primitive operations
and (ii) Jacobian products.

AD can help us better understand the adjoint method, and vice versa.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 3 / 34

Part I:
Finite-build coil design & results

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 4 / 34

Stellarator Coil Design as an Optimization Problem

p∗ = arg min
p

f (p)

f (p) =

∫
S

(
B(p) · n̂

)2
dA + Regularization term(s)

B = Bcoils +���
�:0Bplasma

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 5 / 34

FOCUS: Coil Design Code

x i (θ) =

NF−1∑
m=0

X i
cm cos(mθ) + X i

sm sin(mθ)

y i (θ) =

NF−1∑
m=0

Y i
cm cos(mθ) + Y i

sm sin(mθ)

z i (θ) =

NF−1∑
m=0

Z i
cm cos(mθ) + Z i

sm sin(mθ)

(C. Zhu, S. R. Hudson, Y. Song, Y. Wan 2017)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 6 / 34

Motivation: How much does including finite coil thickness
change optimized coils?

Deviations in B are second-order in the coil thickness

A simple calculation (not shown) shows that for a coil of thickness δ a distance L
from the plasma, the change in magnetic field δB is of order δ2

/L2.

δB ∼ δ2

L2

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 7 / 34

One option: multi-filament approximation to winding pack

Define frame around coil centroid

Rotate frame by angle α(θ)

Place filaments on grid defined by rotated frame

αi (θ) =

NFR−1∑
m=0

Ai
cm cos (mθ) + Ai

sm sin (mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 8 / 34

Optimizing rotation profile of finite-build coils: HSX
Work done by Wisconsin group

No Rotation Some Regularization No Regularization

white

L. Singh, T. Kruger et al., Optimization of Finite-build Stellarator Coils (Accepted to JPP)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 9 / 34

FOCUSADD efficiently optimizes two quantities

FOCUS optimizes the filamentary coil centroid positions x i (θ), y i (θ), z i (θ)

The Wisconsin group optimizes the rotation profile αi (θ)

FOCUSADD optimizes both quantities at once w/ automatic differentiation

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 10 / 34

FOCUSADD efficiently optimizes two quantities

FOCUS optimizes the filamentary coil centroid positions x i (θ), y i (θ), z i (θ)

The Wisconsin group optimizes the rotation profile αi (θ)

FOCUSADD optimizes both quantities at once w/ automatic differentiation

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 10 / 34

Optimized rotation profiles with FOCUSADD

Optimized finite-build coils for rotating elliptical stellarator, with no
rotation (left) and no regularization (right).

Would anyone ever build this?

Probably not. Likely the rotation profile will be set by engineering constraints.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 11 / 34

Finite-build: I’m mostly interested in . . .

1 ||∆r ||1, i.e. how much do the coils shift?
2 ∆f , i.e. how much does the quadratic flux change?

||∆r ||1 ≡ the L1 norm of the difference between the positions of the centroid of the filamentary
optimized coils and the centroid of the finite-build optimized coils.

∆f ≡ the difference between the quadratic flux of finite-build coils which are optimized using a
filamentary approximation, and the quadratic flux of finite-build coils which are optimized using

the finite-build model.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 12 / 34

Does finite-build matter? (W7-X)

Coil centroids for optimized filamentary and finite-build (no rotation) W7-X coils.

||∆r ||1 = 2.6mm

∆f =
1.45− .45

.45
= 240%

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 13 / 34

||∆r ||1: how much do coil positions shift with finite build?
W7-X

||∆r ||1 ≡ the L1 norm of the difference between the positions of the centroid of
the filamentary optimized coils and the centroid of the finite-build optimized coils.

W7-X coil dimensions: 17.8 by 21.2cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 14 / 34

∆f : what is the effect on the quadratic flux?
W7-X

∆f ≡ the difference between the quadratic flux of finite-build coils which are
optimized using a filamentary approximation, and the quadratic flux of finite-build

coils which are optimized for their finite-build.

W7-X coil dimensions: 17.8 by 21.2cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 15 / 34

Does finite-build matter? (LHD)

LHD finite-build coils: 30cm by 30cm. Real coils are 25cm by 45cm.

||∆r ||1 = 1.5mm

∆f =
131− 125

125
= 5.0%

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 16 / 34

||∆r ||1: how much do coil positions shift with finite build?
LHD

||∆r ||1 ≡ the L1 norm of the difference between the positions of the centroid of
the filamentary optimized coils and the centroid of the finite-build optimized coils.

LHD coil dimensions: 45 by 25cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 17 / 34

∆f : what is the effect on the quadratic flux?
LHD

∆f ≡ the difference between the quadratic flux of finite-build coils which are
optimized using a filamentary approximation, and the quadratic flux of finite-build

coils which are optimized for their finite-build.

LHD coil dimensions: 45 by 25cm

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 18 / 34

In conclusion, finite-build can be important when

Coil tolerances are small

Coil-plasma distance is small

Coils are large

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 19 / 34

Part II: Discussion of automatic
differentiation (AD)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 20 / 34

Taking a derivative

Primitive operations

The functions A, B, C , and D should be understood as “primitive operations”. These
could be simple primitives like sin , exp , div , etc, but they could also be

complicated primitives like fft , odeint , solve or even custom primitives like

nicksfunc .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 21 / 34

Taking a derivative

Primitive operations

The functions A, B, C , and D should be understood as “primitive operations”. These
could be simple primitives like sin , exp , div , etc, but they could also be

complicated primitives like fft , odeint , solve or even custom primitives like

nicksfunc .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 21 / 34

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 22 / 34

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 22 / 34

Jacobian-vector product (JVP)

A Jacobian-vector (JVP) product with one column of an identity matrix
gives one column of the Jacobian matrix. E.g., for a function Rn → Rm,

this is

F ′(x)v =

∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

∂xn

1
0
...
0

 =

∂y1
∂x1
...

∂ym

∂x1

E.g., for a scalar function Rn → R, a JVP gives a scalar.

F ′(x)v =
[∂y
∂x1

. . .
∂y

∂xn

]
1
0
...
0

 =
∂y

∂x1

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 23 / 34

Vector-Jacobian product (VJP)

A vector-Jacobian product (VJP) with one row of an identity matrix gives
one row of the Jacobian matrix. E.g., for a function Rn → Rm, this is

vT F ′(x) =
[
1 0 . . . 0

]
∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

∂xn

 =

∂y1
∂x1
...
∂y1
∂xn

E.g., for a scalar function Rn → R, a VJP gives the gradient.

vT F ′(x) =
[
1
][∂y
∂x1

. . .
∂y

∂xn

]
=

∂y
∂x1
...
∂y
∂xn

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 24 / 34

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. v is a “tangent vector”.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. v is a “cotangent vector”.

These are the “pushforward” and ”pullback” maps from differential
geometry, composed with tangent and cotangent vectors respectively.

What makes it “automatic”?
The key is that your AD library knows how to compute Jacobian-products for
each primitive operation. This allows it to compose JVPs and VJPs for each
primitive and compute the total JVP/VJP.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 25 / 34

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. v is a “tangent vector”.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. v is a “cotangent vector”.

These are the “pushforward” and ”pullback” maps from differential
geometry, composed with tangent and cotangent vectors respectively.

What makes it “automatic”?
The key is that your AD library knows how to compute Jacobian-products for
each primitive operation. This allows it to compose JVPs and VJPs for each
primitive and compute the total JVP/VJP.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 25 / 34

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. v is a “tangent vector”.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. v is a “cotangent vector”.

These are the “pushforward” and ”pullback” maps from differential
geometry, composed with tangent and cotangent vectors respectively.

What if I want the full Jacobian, not a JVP or VJP?
AD tools can compute the full Jacobian as well, as well as higher derivatives.
However, JVPs and VJPs are the building blocks of AD tools. I highly
recommend the “JAX autodiff cookbook” for further explanation.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 26 / 34

Fundamentals of AD: A summary

Suppose y = f (x), where x ∈ Rn and y ∈ Rm.

If f is composed of primitive operations implemented by the AD tool,
then if I give it an x , AD computes the numerical value of the
derivative at x .

Forward mode AD, by computing JVPs, can compute the Jacobian of
f in time O(nT).

Reverse mode AD, by computing VJPs, can compute the Jacobian of
f in time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 27 / 34

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(T). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 28 / 34

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(T). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 28 / 34

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(T). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objectives.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 28 / 34

Why would you not compute derivatives with AD?

You have a massive legacy code which you can’t rewrite.

You’ve already written your code and it efficiently computes analytic
derivatives, so why change it? (Next time though, use AD...)

You need highly specialized numerical routines which are not
implemented by an AD tool. (However, you can always wrap a
numerical routine with a custom Primitive if you really need it.)

Memory cost of reverse mode can be large (checkpointing helps
reduce this)

“The automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one of the
great open challenges in the field of High-Performance Scientific
Computing.” -Uwe Naumann (2011)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 29 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 30 / 34

Understanding the adjoint method with AD
The adjoint method computes the VJP of a constraint equation

df

dp
=
∂f

∂p
+ λT ∂g

∂p

The constraint equation g = 0 is a primitive operation taking p as
input and outputting u.
∂f
∂u is the cotangent vector v and λ is the (cotangent) vector in the
VJP λ = vT J .

The equation
(
∂g
∂u

)T
λ = − ∂f

∂u is the adjoint equation for the

primitive g = 0.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 31 / 34

What even is an adjoint equation?
Adjoint equation 6= adjoint method

An adjoint equation is an equation which computes the VJP of a given
primitive operation.

Suppose fi is a primitive operation which takes input x1 ∈ Ra and has
output x2 ∈ Rb. Then the adjoint equation for fi takes a cotangent vector

v2 ∈ Rb as input and outputs a cotangent vector v1 = vT
2 Ji ∈ Ra.

A different interpretation of AD via the adjoint method

Reverse mode AD libraries know how to setup and solve adjoint equations
and compose their solutions for each primitive operation in the library. For
example, the adjoint equation for the primitive y = sin(x) is
dx = dy ∗ cos(x).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 32 / 34

What even is an adjoint equation?
Adjoint equation 6= adjoint method

An adjoint equation is an equation which computes the VJP of a given
primitive operation.

Suppose fi is a primitive operation which takes input x1 ∈ Ra and has
output x2 ∈ Rb. Then the adjoint equation for fi takes a cotangent vector

v2 ∈ Rb as input and outputs a cotangent vector v1 = vT
2 Ji ∈ Ra.

A different interpretation of AD via the adjoint method

Reverse mode AD libraries know how to setup and solve adjoint equations
and compose their solutions for each primitive operation in the library. For
example, the adjoint equation for the primitive y = sin(x) is
dx = dy ∗ cos(x).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 32 / 34

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 33 / 34

https://twitter.com/NMcgreivy/status/1286057985987563525?s=20

Summary

Automatic differentiation allows the efficient computation of
derivatives in stellarator coil design. This has allowed the
development of a new finite-build coil design code, FOCUSADD.

Accounting for the finite build of coils can be important when coil
tolerances are small, when the coil-plasma distance is small, and/or
when coil thicknesses are large.

AD is about (i) primitive operations and (ii) JVPs/VJPs.

AD libraries know how to setup and solve adjoint equations for each
primitive operation in the library.

Thank you

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 34 / 34

Additional Slides

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 35 / 34

AD of FEM code: dolfin-adjoint & FEniCS

The dolfin-adjoint project automatically derives the discrete adjoint and tangent linear
models from a forward model written in the Python interface to FEniCS and Firedrake.

FEniCS enables users to quickly translate scientific models into efficient finite element
code. Firedrake is an automated system for the solution of partial differential equations

using the finite element method (FEM).

dolfin-adjoint is not an AD library!

dolfin-adjoint is similar to an AD library, but operates at a much higher level of
abstraction. It works because it focuses only on FEM code.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 36 / 34

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 37 / 34

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 37 / 34

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 37 / 34

Properties of a great AD library

Feels like native programming

Intuitive API

Full set of primitive operations implemented

Efficient linear algebra (modern implementations wrap Eigen, numpy,
or JIT-compile)

Control flow support (loops, if statements, recursion)

Forward and reverse

Higher-order derivatives

GPU support

Checkpointing

Differentiation through linear, non-linear solves with the adjoint
method

User-defined primitives

MPI parallelization

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 38 / 34

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 39 / 34

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 39 / 34

Stan Math Library (C++)

The Stan Math Library is a C++ template library for automatic
differentiation of any order using forward, reverse, and mixed modes. It
includes a range of built-in functions for probabilistic modeling, linear

algebra, and equation solving.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 40 / 34

Checkpointing

The problem with reverse mode AD

In order to compute a vector-Jacobian product (VJP) backwards, the data
to calculate each primitive VJP much be stored in memory. Storing the
data from every single primitive operation cause very large memory
requirements for large computations.

Checkpointing is a method to reduce memory requirements in exchange
for increased runtime. It works by storing “checkpoints” at various points
in the program and recomputing the data between checkpoints that would

otherwise be stored in memory.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 41 / 34

Checkpointing

Our example function can be visualized as a graph:

Suppose we have a function which looks like this:

Let’s use checkpointing to reduce the memory from the part of the
computation in the purple boxes. We place checkpoints to the left of the

purple boxes and recompute the functions in the purple boxes on the
backwards pass.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 42 / 34

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 43 / 34

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 43 / 34

Review: AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 44 / 34

Review: AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 44 / 34

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 45 / 34

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 45 / 34

Should AD be partially adopted by the stellarator
optimization community? It’s worth considering.
This is an enormously complex question. I’d love to discuss this in depth after the talk or
offline.

Pros
Gradient-based optimization of
high-dimensional non-convex
objective functions has been
successful in many domains.

AD and the adjoint method work
together particularly well.

If N = 50, does a factor of 10-20
increase in computational speed
matter?

Exact derivative needed?

Much easier to rewrite an existing
code we understand than write a
new code.

Cons
Is there sufficient demand for
rewriting STELLOPT with an AD
tool? Does our team have the
right expertise?

The stellarator community seems
to like FORTRAN. Bad for AD.

Does the right tool exist?

Is gradient-free Bayesian
optimization better? Bayesian
optimization with gradients? Do
we have resources to try all the
above?

Memory manageable?

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 45 / 34

AD in machine learning (ML):

A 2009 blog post made a convincing argument that ML researchers should
use AD.

Criticisms of blog post:

Computing derivatives distracts from what the field actually wants to
accomplish.

Valuable researcher time is wasted.

Leads to preference for functions they are capable of manually
deriving gradients for.

AD was eventually fully adopted by the ML community.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 46 / 34

https://justindomke.wordpress.com/2009/02/17/automatic-differentiation-the-most-criminally-underused-tool-in-the-potential-machine-learning-toolbox/

Structure of FOCUSADD (1 of 6)

Coil centroid is parametrized in free space with a Fourier series, as in
FOCUS. Here ri (θ) is the position of the i coil centroid.

x i (θ) =

NF−1∑
m=0

X i
cm cos(mθ) + X i

sm sin(mθ)

y i (θ) =

NF−1∑
m=0

Y i
cm cos(mθ) + Y i

sm sin(mθ)

z i (θ) =

NF−1∑
m=0

Z i
cm cos(mθ) + Z i

sm sin(mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 47 / 34

Structure of FOCUSADD (2 of 6)

The multi-filament winding pack surrounds the coil centroid. For the ith
coil, the axes of the winding pack v i

1 and v i
2 are rotated by an angle αi

relative to the normal N i and binormal B i vectors. The normal vector is
defined as the component perpendicular to the tangent of the vector from

the coil center-of-mass to the local point.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 48 / 34

Structure of FOCUSADD (3 of 6)

α is parametrized by another Fourier series, giving the coil the freedom to
twist in space.

αi (θ) =
NRθ

2
+

NFR−1∑
m=0

Ai
cm cos (mθ) + Ai

sm sin (mθ)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 49 / 34

Structure of FOCUSADD (4 of 6)

Once we have v i
1 and v i

2, we can compute the position of the Nn × Nb

filaments for each coil. We do this using the following formula for the nth
and bth filaments, where n runs from 0 to Nn − 1 and b runs from 0 to
Nb − 1. Here, ln is the spacing between the filaments in the v1 direction,

and lb is the spacing between the filaments in the v2 direction.

r i
n,b(θ) = r i

central +
[
n − Nn − 1

2

]
lnv i

1(θ) +
[
b − Nb − 1

2

]
lbv i (θ)

So far we’ve only computed vacuum fields, using the Biot-Savart law.

B(r) =
Nc∑
i=1

N1∑
n=1

N2∑
b=1

µ0I
i
n,b

∮
d l i

n,b × (r − r i
n,b)

|r − r i
n,b|3

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 50 / 34

Structure of FOCUSADD (5 of 6)

The optimization is performed using gradient descent on an objective
function ftotal , given by a sum of physics objectives and engineering

objectives.

ftotal (p) = fPhys(p) + λEng fEng (p)

The simplest possible physics objective was chosen, the squared
surface-normal magnetic field integrated over the surface.

fPhys ≡
∫

S
(B · n)2dA

A simple engineering objective was chosen, namely the total length of the
coils.

fEng ≡
N∑

i=1

Li

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 51 / 34

Structure of FOCUSADD (6 of 6)

The following computational graph describes the structure of the
computation performed by FOCUSADD. In my AD tool (JAX), I simply

compute ftotal , then type “grad” to get the gradient.

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 52 / 34

Important facts about AD

Suppose y = f (x), where x ∈ Rn and y ∈ Rm. Then first-order AD
computes the numerical value of the Jacobian ∂y

∂x at a particular value
of x .

Suppose f takes time T to compute.

Forward mode AD computes the Jacobian of f in time O(nT).

Reverse mode AD computes the Jacobian of f in time O(mT).

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 53 / 34

How does AD work?

Step 1: Compute function

The AD tool computes the function f , one elementary operation at a time.
A representation of the ‘computational graph’ is built.

f (x , y) = sin(xy) + x2/y

Step 2: Compute derivatives in the reverse order

Compute the derivative of the output of f with respect to each variable vi

by traversing the graph in reverse order. This is exactly the chain rule,
applied in a clever way.

∂f

∂vi
=

∑
j∈children

of i

∂f

∂vj

∂vj

∂vi

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 54 / 34

The details

Step 1:

x = 2.0
y = 3.0
v1 = x ∗ y = 6.0
v2 = sin(v1) = −0.297
v3 = x2 = 4.0
v4 = v3/y = 1.333
f = v2 + v4 = 1.054

Step 2:

∂f
∂f = 1.0
∂f
∂v4

= 1.0
∂f
∂v3

= ∂f
∂v4

∂v4
∂v3

= 0.333
∂f
∂v2

= 1.0
∂f
∂v1

= ∂f
∂v2

∂v2
∂v1

= 0.960

Step 2, continued:

∂f
∂y = ∂f

∂v1

∂v1
∂y + ∂f

∂v4

∂v4
∂y

∂f
∂y = 1.476
∂f
∂x = ∂f

∂v3

∂v3
∂x + ∂f

∂v1

∂v1
∂x

∂f
∂x = 4.214

f (x , y) = sin(xy) + x2/y

∂f

∂vi
=

∑
j∈children

of i

∂f

∂vj

∂vj

∂vi

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 55 / 34

Deviations in the magnetic field are second-order in the
coil thickness divided by the coil-plasma distance

Suppose we have a coil carrying current in the y -direction with thickness δ
a distance L away from our plasma.

Biot-Savart:
dBz

d`y
= −µ0Iy

4π

∫ δ/2

−δ/2

dx

(L + x)2

dBz ≈ −
µ0Iyd`y

4πL2

∫ δ/2

−δ/2
(1−

�
�
��
0

2x

L
+

3x2

L2
)dx ≈ dBfilament(1 +

δ2

4L2
)

Nick McGreivy (PPPL) Stellarator Coil Design with AD Simons Hour 56 / 34

