
Automatic Differentiation for Scientific Discovery and
Design: Useful, Elegant, and Underutilized

Nick McGreivy

PhD Candidate
Program in Plasma Physics

Princeton University

January 20th 2021

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 1 / 15



Twitter for SciComm: Useless, Inelegant, and Overutilized

Today’s talk:

Connections between AD and adjoint method:

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 2 / 15

https://twitter.com/NMcgreivy/status/1351706692317138945?s=20
https://twitter.com/NMcgreivy/status/1286057985987563525?s=20


Automatic Differentiation (AD)

1 Useful
2 Elegant
3 Underutilized

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 3 / 15



Automatic Differentiation (AD)

1 Useful
2 Elegant
3 Underutilized

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 3 / 15



Protein folding: solve for f

Protein folding is a prediction problem: the goal is to learn a function f
which, given a 1D sequence of amino acids, is able to predict the 3D
structure of the protein.

Nick McGreivy (Princeton) Useful 2021 MPPC Annual Meeting 4 / 15



Alphafold 2 (2020)

“It’s a breakthrough of the first order, certainly one of the most significant
scientific results of my lifetime.” -Mohammed AlQuraishi, Assistant
Professor of Systems Biology at Columbia University

Nick McGreivy (Princeton) Useful 2021 MPPC Annual Meeting 5 / 15



Gradient descent on gradient descent

Nick McGreivy (Princeton) Useful 2021 MPPC Annual Meeting 6 / 15



Useful: to feel like Leonardo DiCaprio

Nick McGreivy (Princeton) Useful 2021 MPPC Annual Meeting 7 / 15



Don’t believe me, believe these random people on twitter

Nick McGreivy (Princeton) Useful 2021 MPPC Annual Meeting 8 / 15



Automatic Differentiation (AD)

1 Useful
2 Elegant
3 Underutilized

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 8 / 15



AD is Elegant

In theory: fundamentally, AD is based on the chain rule. We’ll see
how this allows us to compute the derivatives of arbitrary functions
composed of known building blocks.

In practice: the high-quality AD tools developed for ML research have
made taking gradients simple and effortless. I’ll demonstrate this with
a simple stellarator coil design code.

I am going to simplify the theory somewhat, as in practice AD uses either
“forward mode” or “reverse mode”. Those important concepts are not
discussed in this talk.

Nick McGreivy (Princeton) Elegant 2021 MPPC Annual Meeting 9 / 15



Elegant in theory: the multivariate chain rule

Suppose we have a multivariate function f which has input x :

f (x) = u(v(x))

The Jacobian is given by the chain rule, which multiplies elementary
Jacobian matrices:

∂f
∂x

=
∂u
∂v

∂v
∂x

In the language of AD, u and v are primitive functions and ∂u
∂v and ∂v

∂x are
elementary partial derivatives. f is built by composing primitive functions,

and ∂f
∂x is computed by multiplying elementary partial derivatives.

Nick McGreivy (Princeton) Elegant 2021 MPPC Annual Meeting 10 / 15



Elegant in theory: AD is about composing derivatives

Suppose I create a library of
primitive functions A, B, and C .
I define how each primitive
function is evaluated, and I
define the derivative of each
primitive function analytically:

An AD software package uses a library, such as
the one on the left, to compute the derivative of
any function which is made up of the primitive
functions A, B, and C ; e.g.

f1 = C (B(A(y)))

df1
dy

=
(dC
dx

)
x=B(A(y))

(dB
dx

)
x=A(y)

(dA
dx

)
x=y

is one possible function composition whose
derivative AD computes. But our AD package
can compute the derivative of any function made
up of these building blocks; e.g.

f1 = B(. . .C (y))

df2
dy

=
(dB
dx

)
x=B(...C(y))

. . .
(dC
dx

)
x=y

Nick McGreivy (Princeton) Elegant 2021 MPPC Annual Meeting 11 / 15



Elegant in theory: AD is about composing derivatives

Suppose I create a library of
primitive functions A, B, and C .
I define how each primitive
function is evaluated, and I
define the derivative of each
primitive function analytically:

An AD software package uses a library, such as
the one on the left, to compute the derivative of
any function which is made up of the primitive
functions A, B, and C ; e.g.

f1 = C (B(A(y)))

df1
dy

=
(dC
dx

)
x=B(A(y))

(dB
dx

)
x=A(y)

(dA
dx

)
x=y

is one possible function composition whose
derivative AD computes. But our AD package
can compute the derivative of any function made
up of these building blocks; e.g.

f1 = B(. . .C (y))

df2
dy

=
(dB
dx

)
x=B(...C(y))

. . .
(dC
dx

)
x=y

Nick McGreivy (Princeton) Elegant 2021 MPPC Annual Meeting 11 / 15



Elegant in practice: coil design in 25 lines of code

FOCUS (Caoxiang Zhu et al 2018 Nucl. Fusion) coil representation:

r i (θ) =

NF−1∑
m=0

R i
cm cos (mθ) + R i

sm sin (mθ)

The objective function is the quadratic flux:

f (p) =

∫
S

(
B(p) · n̂

)2
dA

Perform gradient-based optimization:

p′ = p − η∇f

Nick McGreivy (Princeton) Elegant 2021 MPPC Annual Meeting 12 / 15



Automatic Differentiation (AD)

1 Useful
2 Elegant
3 Underutilized

Nick McGreivy (Princeton) 2021 MPPC Annual Meeting 12 / 15



Underutilized in coil design: FOCUSADD and Finite Build

N. McGreivy et al 2021 Nucl. Fusion

New paradigm in coil design: whatever we can compute, we can optimize

Using AD has two major advantages: (1) Instead of worrying about how to
compute gradients of an objective function, we only have to worry about what
objective function we want to optimize. (2) We can rapidly iterate on different
objective functions, meaning we can explore a much larger optimization space.

A new paradigm in coil design is good, but we can do better. . .

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 13 / 15



Underutilized in coil design: FOCUSADD and Finite Build

N. McGreivy et al 2021 Nucl. Fusion

New paradigm in coil design: whatever we can compute, we can optimize

Using AD has two major advantages: (1) Instead of worrying about how to
compute gradients of an objective function, we only have to worry about what
objective function we want to optimize. (2) We can rapidly iterate on different
objective functions, meaning we can explore a much larger optimization space.

A new paradigm in coil design is good, but we can do better. . .

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 13 / 15



Underutilized in coil design: FOCUSADD and Finite Build

N. McGreivy et al 2021 Nucl. Fusion

New paradigm in coil design: whatever we can compute, we can optimize

Using AD has two major advantages: (1) Instead of worrying about how to
compute gradients of an objective function, we only have to worry about what
objective function we want to optimize. (2) We can rapidly iterate on different
objective functions, meaning we can explore a much larger optimization space.

A new paradigm in coil design is good, but we can do better. . .

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 13 / 15



Single-stage optimization is the next big kahuna

Combined coil-plasma optimization requires passing gradients between
plasma solvers and coil codes:

df

dcoil
=

∂f

∂coil
+

∂f

∂plasma

∂plasma

∂coil

(A. Giuliani et. al., “Single-stage gradient-based stellarator coil design.”, arXiv:2010.02033)

It’s not my job to design SIMSOPT, but if it were . . .

I’d implement SIMSOPT as a collection of primitive functions using AD.

AD makes passing Jacobians between compositions of primitive functions
easy. The strategy is to implement a collection of modular primitive

functions. Under this framework, adjoint methods are implemented as
primitive functions. Primitives are then used as building blocks which are

composed as needed to form single-stage (or two-stage) optimizations.

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 14 / 15



Single-stage optimization is the next big kahuna

Combined coil-plasma optimization requires passing gradients between
plasma solvers and coil codes:

df

dcoil
=

∂f

∂coil
+

∂f

∂plasma

∂plasma

∂coil

(A. Giuliani et. al., “Single-stage gradient-based stellarator coil design.”, arXiv:2010.02033)

It’s not my job to design SIMSOPT, but if it were . . .

I’d implement SIMSOPT as a collection of primitive functions using AD.

AD makes passing Jacobians between compositions of primitive functions
easy. The strategy is to implement a collection of modular primitive

functions. Under this framework, adjoint methods are implemented as
primitive functions. Primitives are then used as building blocks which are

composed as needed to form single-stage (or two-stage) optimizations.

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 14 / 15



Single-stage optimization is the next big kahuna

Combined coil-plasma optimization requires passing gradients between
plasma solvers and coil codes:

df

dcoil
=

∂f

∂coil
+

∂f

∂plasma

∂plasma

∂coil

(A. Giuliani et. al., “Single-stage gradient-based stellarator coil design.”, arXiv:2010.02033)

It’s not my job to design SIMSOPT, but if it were . . .

I’d implement SIMSOPT as a collection of primitive functions using AD.

AD makes passing Jacobians between compositions of primitive functions
easy. The strategy is to implement a collection of modular primitive

functions. Under this framework, adjoint methods are implemented as
primitive functions. Primitives are then used as building blocks which are

composed as needed to form single-stage (or two-stage) optimizations.

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 14 / 15



Thanks! Questions?

Nick McGreivy (Princeton) Underutilized 2021 MPPC Annual Meeting 15 / 15


