
A Tutorial on Automatic Differentiation for Scientific
Design: Practical, Elegant, and Powerful

Nick McGreivy

PhD Candidate
Program in Plasma Physics

Princeton University

blank w

March 9th 2021

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 1 / 21

Automatic Differentiation (AD)

1 Practical
2 Elegant
3 Powerful

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 1 / 21

Automatic Differentiation (AD)

1 Practical
2 Elegant
3 Powerful

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 1 / 21

Automatic Differentiation (AD)
Also known as algorithmic differentiation or computational differentiation

Automatic Differentiation (AD) is a technology for automatically
computing the exact numerical derivatives of any differentiable
function y = f (x) represented by a computer program, including
arbitrarily complex simulations.

To compute automatic derivatives of a function, you need to program
that function using an AD software tool.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 2 / 21

Where is AD being used?
A few highlights

Machine Learning (Tensorflow,
Pytorch are AD libraries
specialized for ML)

Learning protein structure (e.g.,
AlphaFold)

Many-body Schrodinger
equation (e.g., FermiNet)

Stellarator coil design

Differentiable ray tracing

Model uncertainty & sensitivity

Optimization of fluid simulations

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 3 / 21

https://twitter.com/glouppe/status/1361941266901131265?s=20
https://colab.research.google.com/drive/1RTsSyr7B3THKVGp_44Oyh7rxBriOHzJ7?usp=sharing

Example:
Stellarator Coil Design in 25 lines

of code
(Go to code)

I don’t explain what the code is doing, sorry. You can find the code on my GitHub under “focus tiny”. Although Chris Smiet
has added to the code and added extensive comments, so a more appropriate name might now be “focus footnotesize”.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 4 / 21

Automatic Differentiation (AD)

1 Practical
2 Elegant
3 Powerful

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 4 / 21

AD is Elegant

In theory: fundamentally, AD is based on the chain rule. We’ll see
how this allows us to compute the derivatives of arbitrary functions
composed of known building blocks.

In practice: the high-quality AD tools developed for ML research have
made taking gradients simple and effortless. I’ll demonstrate this with
a simple stellarator coil design code.

I am going to simplify the theory somewhat, as in practice AD uses either
“forward mode” or “reverse mode”. I’ll talk about these concepts later.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 5 / 21

Elegant in theory: the multivariate chain rule

Suppose we have a multivariate function f which has input x :

f (x) = u(v(x))

The Jacobian is given by the chain rule, which multiplies elementary
Jacobian matrices:

∂f
∂x

=
∂u
∂v

∂v
∂x

In the language of AD, u and v are primitive functions and ∂u
∂v and ∂v

∂x are
elementary partial derivatives.

Bottom line

f is built by composing primitive functions, and ∂f
∂x is computed by

multiplying elementary partial derivatives.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 6 / 21

Elegant in theory: AD is about composing derivatives

Suppose I create a library of
primitive functions A, B, and C .
I define how each primitive
function is evaluated, and I
define the derivative of each
primitive function analytically:

An AD software package uses a library, such as
the one on the left, to compute the derivative of
any function which is made up of the primitive
functions A, B, and C ; e.g.

f1 = C (B(A(y)))

df1
dy

=
(dC
dx

)
x=B(A(y))

(dB
dx

)
x=A(y)

(dA
dx

)
x=y

is one possible function composition whose
derivative AD computes. But our AD package
can compute the derivative of any function made
up of these building blocks; e.g.

f2 = B(. . .C (y))

df2
dy

=
(dB
dx

)
x=B(...C(y))

. . .
(dC
dx

)
x=y

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 7 / 21

Elegant in theory: AD is about composing derivatives

Suppose I create a library of
primitive functions A, B, and C .
I define how each primitive
function is evaluated, and I
define the derivative of each
primitive function analytically:

An AD software package uses a library, such as
the one on the left, to compute the derivative of
any function which is made up of the primitive
functions A, B, and C ; e.g.

f1 = C (B(A(y)))

df1
dy

=
(dC
dx

)
x=B(A(y))

(dB
dx

)
x=A(y)

(dA
dx

)
x=y

is one possible function composition whose
derivative AD computes. But our AD package
can compute the derivative of any function made
up of these building blocks; e.g.

f2 = B(. . .C (y))

df2
dy

=
(dB
dx

)
x=B(...C(y))

. . .
(dC
dx

)
x=y

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 7 / 21

Elegant in practice: amazingly simple software tools

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 8 / 21

Differentiating a Function Composition

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 9 / 21

Differentiating a Function Composition

Order matters!

If F : Rn → Rm takes time O(T) to compute, then multiplying from right to left takes
time O(nT) and multiplying from left to right takes time O(mT).

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 9 / 21

Jacobian-vector product (JVP)

A Jacobian-vector (JVP) product with one column of an identity matrix
gives one column of the Jacobian matrix. E.g., for a function Rn → Rm,

this is

F ′(x)v =

∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym∂xn

1
0
...
0

 =

∂y1
∂x1
...

∂ym
∂x1

E.g., for a scalar function Rn → R, a JVP gives a scalar.

F ′(x)v =
[∂y
∂x1

. . .
∂y

∂xn

]
1
0
...
0

 =
∂y

∂x1

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 10 / 21

Vector-Jacobian product (VJP)

A vector-Jacobian product (VJP) with one row of an identity matrix gives
one row of the Jacobian matrix. E.g., for a function Rn → Rm, this is

vTF ′(x) =
[
1 0 . . . 0

]
∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym∂xn

 =

∂y1
∂x1
...

∂y1
∂xn

E.g., for a scalar function Rn → R, a VJP gives the gradient.

vTF ′(x) =
[
1
][∂y
∂x1

. . .
∂y

∂xn

]
=

∂y
∂x1
...
∂y
∂xn

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 11 / 21

AD: Forward and Reverse Modes

Forward mode: Jacobian-vector products (JVPs), build Jacobian one
column at a time. v is a “tangent vector”.

Reverse mode: vector-Jacobian products (VJPs), build Jacobian one row
at a time. v is a “cotangent vector”.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 12 / 21

Fundamentals of AD: A summary

Suppose y = f (x), where x ∈ Rn and y ∈ Rm.
If f is composed of primitive operations implemented by the AD tool,
then if I give it an x , AD computes the numerical value of the
derivative at x .
Forward mode AD, by computing JVPs, can compute the Jacobian of
f in time O(n).
Reverse mode AD, by computing VJPs, can compute the Jacobian of
f in time O(m).

What makes it “automatic”?

The key is that your AD library knows how to compute Jacobian-products for each primitive operation. This allows it to
compose JVPs and VJPs for each primitive and compute the total JVP/VJP.

What if I want the full Jacobian, not a JVP or VJP?

AD tools can compute the full Jacobian as well, as well as higher derivatives. However, JVPs and VJPs are the building blocks
of AD tools. I highly recommend the “JAX autodiff cookbook” for further explanation.

Is there a connection to differential geometry?

Forward and reverse modes are the “pushforward” and ”pullback” maps from differential geometry, composed with tangent and
cotangent vectors respectively.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 13 / 21

Fundamentals of AD: A summary

Suppose y = f (x), where x ∈ Rn and y ∈ Rm.
If f is composed of primitive operations implemented by the AD tool,
then if I give it an x , AD computes the numerical value of the
derivative at x .
Forward mode AD, by computing JVPs, can compute the Jacobian of
f in time O(n).
Reverse mode AD, by computing VJPs, can compute the Jacobian of
f in time O(m).

What makes it “automatic”?

The key is that your AD library knows how to compute Jacobian-products for each primitive operation. This allows it to
compose JVPs and VJPs for each primitive and compute the total JVP/VJP.

What if I want the full Jacobian, not a JVP or VJP?

AD tools can compute the full Jacobian as well, as well as higher derivatives. However, JVPs and VJPs are the building blocks
of AD tools. I highly recommend the “JAX autodiff cookbook” for further explanation.

Is there a connection to differential geometry?

Forward and reverse modes are the “pushforward” and ”pullback” maps from differential geometry, composed with tangent and
cotangent vectors respectively.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 13 / 21

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(1). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objective functions.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 14 / 21

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(1). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objective functions.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 14 / 21

Why is AD useful?

1. Simplicity

Finding and programming analytic derivatives is time-consuming and
error-prone.

2. Ideal for gradient-based optimization

Reverse mode AD computes the gradient of a scalar function in time
O(1). This is as efficient as the best analytic methods.

3. Effortless gradients

Easy to rapidly prototype new ideas and objective functions.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 14 / 21

Automatic Differentiation (AD)

1 Practical
2 Elegant
3 Powerful

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 14 / 21

All of Computational Physics in One Slide

Linear equations

Time-dependent linear
equations

Nonlinear equations

Time-dependent nonlinear
equations

A(Ω)u = b(Ω)

A(ut ,Ω)ut+1 = b(ut ,Ω)

g(u,Ω) = 0⇒ −g(ui ,Ω) =
∂g
∂u

(ui+1 − ui)

g(ut ,ut+1,Ω) = 0⇒

−g(ut ,ut+1
i ,Ω) =

∂g
∂u

(ut+1
i+1 − ut+1

i)

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 15 / 21

Adjoint Methods

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 16 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p

⇒ ∂u
∂p

= −
(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p

⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Review: The adjoint method
Differentiating under constraints requires a linear solve

p∗ = arg min
p

f (u(p),p) s.t. g(u,p) = 0 defines u. Linearize around u.

df

dp
=
∂f

∂p
+
∂f

∂u
∂u
∂p

dg
dp

= 0 =
∂g
∂u

∂u
∂p

+
∂g
∂p
⇒ ∂u

∂p
= −

(
∂g
∂u

)−1∂g
∂p

df

dp
=
∂f

∂p
− ∂f

∂u

(
∂g
∂u

)−1∂g
∂p
⇒ ∂f

∂u

(
∂g
∂u

)−1

= −λT

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 17 / 21

Understanding the adjoint method with AD
The adjoint method computes the VJP of a constraint equation

df

dp
=
∂f

∂p
+ λT ∂g

∂p

The constraint equation g = 0 is a primitive operation taking p as
input and outputting u.
∂f
∂u is the cotangent vector v and λ is the (cotangent) vector in the
VJP λ = vTJ .

The equation
(
∂g
∂u

)T
λ = − ∂f

∂u is the adjoint equation for the

primitive g = 0.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 18 / 21

Why AD is Powerful: Custom Primitives

Bottom line

Automatic differentiation can perform the adjoint method using custom
primitive functions. This allows AD to be used in computational physics.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 19 / 21

Why would you not compute derivatives with AD?

You have a massive legacy code which you can’t rewrite.

You’ve already written your code and it efficiently computes analytic
derivatives, so why change it? (Next time though, use AD...)

You need highly specialized numerical routines which are not
implemented by an AD tool. (However, you can always wrap a
numerical routine with a custom Primitive if you really need it.)

Memory cost of reverse mode can be large (checkpointing helps
reduce this)

“The automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one of the
great open challenges in the field of High-Performance Scientific
Computing.” -Uwe Naumann (2011)

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 20 / 21

Summary

Automatic differentiation allows for the efficient computation of
derivatives for stellarator design.
AD is about (i) primitive operations and (ii) JVPs/VJPs.
AD libraries know how to compute JVPs and VJPs for each primitive
operation in the library.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 21 / 21

https://twitter.com/NMcgreivy/status/1286057985987563525?s=20

Additional Slides

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 22 / 21

Review: AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 23 / 21

Review: AD and the adjoint method for linear equations

Goal: Ω∗ = arg min
Ω

f (Φ(Ω),Ω)

Use GD: Ωn+1 = Ωn − η ∂f
∂Ω

s.t. A(Ω)Φ = b(Ω)

white
Using the adjoint method, we have

df

dΩ
=

∂f

∂Ω
+ λT ∂b

∂Ω
− λT ∂A

∂Ω
Φ where ATλ =

∂f

∂Φ

AD tools setup and solve the adjoint equation of a linear system
automatically, e.g. JAX uses np.linalg.solve and grad .

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 23 / 21

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 24 / 21

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 24 / 21

AD and the adjoint method for nonlinear equations

The adjoint method allows us to differentiate under the constraint g = 0.

df

dp
=
∂f

∂p
+ λT ∂g

∂p
where

(
∂g
∂u

)T

λ = − ∂f
∂u

Suppose the equation g = 0 is solved iteratively with Newton’s method:

g(u i ,p) +
∂g
∂u
· (u i+1 − u i) = 0⇒ ∂g

∂u
δu = −g(u i ,p)

The Newton solver already computes ∂g
∂u ! So by solving g = 0, we have

everything we need to perform the adjoint method. A good AD tool will
set up and solve this adjoint equation automatically.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 24 / 21

Properties of a great AD library

Feels like native programming

Intuitive API

Full set of primitive operations implemented

Efficient linear algebra (modern implementations wrap Eigen, numpy,
or JIT-compile)

Control flow support (loops, if statements, recursion)

Forward and reverse

Higher-order derivatives

GPU support

Checkpointing

Differentiation through linear, non-linear solves with the adjoint
method

User-defined primitives

MPI parallelization

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 25 / 21

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 26 / 21

JAX: Just After eXecution (Python)

JAX is Numpy and Scipy with composable function transformations:
JIT-compile (to CPU or GPU) with jit , vectorize functions with vmap ,

SPMD parallelization with pmap , and automatic differentiation with

grad , jacfwd , and jacrev .

Not just an AD library!

JAX is super useful even if you aren’t doing AD! You get the simplicity of
Numpy and Scipy with the speed of JIT-compilation. Programming in
JAX feels just like programming in Numpy.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 26 / 21

Stan Math Library (C++)

The Stan Math Library is a C++ template library for automatic
differentiation of any order using forward, reverse, and mixed modes. It
includes a range of built-in functions for probabilistic modeling, linear

algebra, and equation solving.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 27 / 21

Checkpointing

The problem with reverse mode AD

In order to compute a vector-Jacobian product (VJP) backwards, the data
to calculate each primitive VJP much be stored in memory. Storing the
data from every single primitive operation cause very large memory
requirements for large computations.

Checkpointing is a method to reduce memory requirements in exchange
for increased runtime. It works by storing “checkpoints” at various points
in the program and recomputing the data between checkpoints that would

otherwise be stored in memory.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 28 / 21

Checkpointing

Our example function can be visualized as a graph:

Suppose we have a function which looks like this:

Let’s use checkpointing to reduce the memory from the part of the
computation in the purple boxes. We place checkpoints to the left of the

purple boxes and recompute the functions in the purple boxes on the
backwards pass.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 29 / 21

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 30 / 21

AD and the adjoint method for iterative algorithms

Suppose we have an iterative algorithm for solving some set of equations, and we want
to compute the derivative of the solution with respect to some parameter a. Let xinit be
an initial guess, and suppose the iterative algorithm runs n times before converging to a

solution. This computation can be visualized with the following graph:

We could compute the derivative dx/da by using automatic differentiation on the entire
computation. This might be very inefficient, both in terms of runtime and memory.

A clever trick
We can use the mathematical structure of the iteration to more efficiently compute the
derivative. The key is that the derivative doesn’t depend on xinit. This means that when
computing the derivative, we can simply rerun the iteration with xinit = xn, and compute
the derivative of a single iteration of the algorithm. This is the trick for applying the
adjoint method to systems of non-linear equations.

Nick McGreivy (PPPL) Scientific Design with AD EP Fusion Webinar 30 / 21

