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0 Introduction

AST568 is divided into two sections. The first half, taught by Professor Hong
Qin, introduces the students to differential geometry and gyrokinetics. The
second half, taught by Professor Bill Tang, covers plasma transport, including
classical, neoclassical, and anomalous transport. These notes are intended to
teach and explain the material covered in the second half of AST568 taught at
Princeton University during Spring 2018.

I am writing these notes primarily as a learning experience. I learn best
when I am forced to explain something to someone else. I am also writing these
notes because I felt that the course would benefit greatly from a more thorough
set of lecture notes. Hopefully these notes can be a useful reference to future
students taking the course. As a student, I tend to learn by working through
notes outside of class, and I know that notes like these would have been useful
for me as I was taking the class.

These notes are obviously still a work in progress. Once I’ve corrected these
notes and have them in their final version, if you find a typo or an error, no
matter how small, please send me an email at mcgreivy@princeton.edu so I can
fix it. I’m also highly appreciative of suggestions to make these notes better.

I’ve divided these notes into four chapters, corresponding to the material
covered in class, roughly in the order which it was covered. The first chap-
ter covers classical transport, which is related to the transport of particles and
energy in a magnetized cylinder due to collisions. The second chapter covers
collisional neoclassical diffusion, while the third chapter covers collisionless neo-
classical diffusion. Neoclassical diffusion is the transport of particles and energy
in a realistic toroidal geometry, due to the effects of collisions. It’s like classical
transport, but with a curved magnetic field instead of a straight magnetic field.
Neoclassical transport is always higher than classical transport. The final chap-
ter covers anomalous transport, which is enhanced energy and particle transport
in a toroidal geometry due to waves and turbulence. This anomalous transport
increases the transport over the neoclassical levels alone. Classical transport
is the lowest level of transport, followed by neoclassical transport. Anomalous
transport enhances the transport levels above the neoclassical level. Tokamaks
unfortunately have anomalous as well as neoclassical transport.
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1 Classical Transport

“We’ve already figured out fusion. We just need an
infinitely long cylinder.”

Bob Kaita

Heat flows from hot to cold. If we want to do fusion on earth, we’re going to
have to make some gas really hot. If we want to create commercial amounts of
fusion energy from magnetically confined plasma, we need to keep that plasma
hot, mere meters away from the room temperature outside world. These notes
concern themselves with the question of how well a magnetically confined plasma
keeps itself hot. This subject is called ‘plasma transport’, or sometimes just
‘transport’. Transport is an enormously important topic in fusion because if we
don’t achieve sufficiently low levels of transport, magnetic fusion will be, at best,
uneconomical. For the purposes of AST568, there are three types of transport
we concern ourselves with: classical, neoclassical, and anomalous. This chapter
focuses on classical transport, which is the transport of a plasma in a cylindrical
geometry due to collisions between particles. Classical diffusion is really slow - if
magnetic confinement devices transported heat and particles out at the classical
rate, we would’ve reached ignition a long time ago. Unfortunately, we haven’t.
There are a number of reasons for this, and over the course of these notes we’ll
begin to understand these reasons.

In these notes, we are going to focus on tokamaks, as well as hydrogen
(qi = +e) plasmas. Neoclassical and anamolous transport in stellerators are
important topics in themselves, but not ones that are covered in class.

1.1 Diffusion

Let’s say a few words about diffusion before we get to the plasma physics. When
microscopic particles move randomly in small steps, the particle flux ~Γ is usually
proportional to the density gradient.

~Γ = −D~∇n (1.1)

The constant of proportionality D is the called diffusion coefficient. Since the
change in time of density at a point in space with is proportional to the diver-
gence of the particle flux at that point, we have

∂n

∂t
= −~∇ · ~Γ (1.2)

This is just a continuity equation for particles. Putting together equations 1.1
and 1.2, we have the diffusion equation for the evolution of particle density.1

∂n

∂t
= D~∇2n (1.3)

1Although I am focusing on particle density here, this equation is also known as the heat
equation. When thermal energy diffuses in a random-walk process, the temperature obeys a
diffusion equation as well.
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This is a pretty intuitive equation. It tells us that if the density of particles is
constant in space, it won’t change. It also tells us that if the density of particles
changes linearly with position, the density at each point in space won’t change
even though we have a non-zero flux. For the density at each point in space
to change with time, there needs to be some non-linear change of density with
position. What about D, the diffusion coefficient? How do we calculate D?
Well, one way to do it is to suppose that our particles move in a random-walk,
with a step size ∆x in some random direction every time interval ∆t. If we were
to calculate the diffusion coefficient for a random walk, we find the diffusion
coefficient goes as Todo: look at 401 notes to see how this is calculated

D ∼ (∆x)2

∆t
(1.4)

We’ll be using this result a bunch throughout these notes. We also have that
the root-mean squared displacement of a random-walk process,

√
〈x2〉, goes like

Todo: look at 401 notes to see how this is calculated√
〈x2〉 ∼

√
2NDt (1.5)

where N is the number of dimensions the particle can diffuse in. We’ll often
write the LHS as simply

√
Dt. What this equation tells us is that if we look at

a single particle undergoing a random-walk, then after time t we can roughly
expect that the particle is a distance ∼

√
Dt away from where it started. Of

course, the average distance away is zero (since half move in the positive direc-
tion and half move in the negative direction), so we look at the rms displacement.
Classical transport attempts to calculate the perpendicular diffusion coefficient
for a magnetically confined plasma. If a plasma is magnetically confined, the
particles orbit around the magnetic field. When they collide with other par-
ticles, their guiding center position changes. Assuming the collisions happen
randomly, then the diffusion coefficient will be, approximately, the change in
the gyrocenter position between collisions squared divided by the average time
between collisions. Before we calculate the diffusion coefficent for classic trans-
port, let’s discuss why in classical transport, we are generally more interested
in electron-ion collisions than ion-ion or electron-electron collisions.

1.2 Like and Unlike Particle Collisions

It turns out, as we will show in a moment, that collisions between electrons and
ions in a magnetized plasma will lead to the center of their orbits (gyro-centers)
being displaced the same amount, in the same direction. On the other hand, for
like-particle collisions (electron-electron and ion-ion collisions), the gyro-centers
~rgc of the two particles get displaced oppositely from each other. We can write
this mathematically, for a two-particle collision, as

q1∆~rgc1 + q2∆~rgc2 = 0 (1.6)
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Figure 1: The division of a particle’s position into the guiding center ~rgc and
the gyro-radius ~ρ.

This curious observation has a few important consequences. Firstly, we should
be mainly concerned with electron-ion collisions when studying diffusion in mag-
netized plasmas, and not like-particle collisions. The reason for this is that like-
particle collisions do not have a net diffusion. While the density of particles can
evolve due to like-particle collisions,2 each particles motion is not truly random
because it is necessarily opposite to the motion of another particle, and thus the
evolution of density doesn’t follow equation 1.1. If the density evolution doesn’t
follow equation 1.1, then we can’t use the diffusion equation for like-particle
collisions. Also, the evolution of the density will be much smaller when the net
diffusion is zero. Therefore, we will concentrate on ion-electron collisions for
calculating diffusion coefficients. The second consequence of our curious obser-
vation is that the rate of diffusion of electrons and ions due to displacement
of their gyro-centers is equal,3 since their step size and time between collisions
is the same for each species. We therefore don’t have to worry about separate
diffusion coefficients for electrons and ions. This discussion is only true for clas-
sical diffusion, and is modified for neoclassical diffusion. But we’ll have to wait
to chapter 2 to see how this gets modified.

Let’s derive this result. Suppose we have a constant magnetic field pointing
in the z-direction, and a particle of mass m, charge q, and velocity ~v orbiting
in the field. The equation of motion for the particle is just md~v

dt = q~v × ~B. We
know the solution to this equation - the solution is gyoromotion perpendicular
to the field and free motion along the field. We can write the position ~r as the

2For example, imagine a delta-function density function of ions in a magnetized plasma.
Even if the ions only collide with other ions during their gyro-orbits, n(x) can still change
due to like-particle collisions. It just isn’t a classic random-walk process, so it doesn’t follow
the diffusion equation. It’s not a classic random-walk process, because the flux of particles
isn’t proportional to the a density gradient. If there is a density gradient, for ion-ion collisions
there will be as many particles diffusing up the gradient as down the gradient.

3At least, for hydrogen plasmas where qi = e, which is what we’re considering in these
notes.

6



sum of the guiding center position ~rgc and the gyro-radius vector ~ρ, as we did
in GPP1 and as shown in figure 1.

~r = ~rgc + ~ρ = ~rgc +
mb̂× ~v
qB

The gyro-center ~rgc is

~rgc = ~r +
m~v × b̂
qB

(1.7)

So far, this is all stuff from GPP1. Now, in a collision, momentum is conserved.
The change in momentum of the first particle in the collision plus the change
in momentum of the second particle in the collision is zero.

m1∆~v1 +m2∆~v2 = 0

Taking the cross product of this equation with ~b, we get

m1∆~v1 × b̂+m2∆~v2 × b̂ = 0 (1.8)

If the collision is fast, we also have that the position of each particle doesn’t
change during a collision, or ∆~r = 0. Thus, from equation 1.7 the change in
gyro-center during a collision is

∆~rgc =
m∆~v × b̂
qB

(1.9)

Combining this with the conservation of momentum, equation 1.8, we get

q1∆~rgc1 + q2∆~rgc2 = 0 (1.10)

This is the promised result - particles of the same charge diffuse in opposite
directions (i.e. no net diffusion) which particles of different charge (i.e. elec-
trons and ions) diffuse in the same direction, with the the same magnitude, at
least for hydrogen. Remember what this conclusion tells us. Firstly, it tells us
that for the purposes of calculating diffusive transport, we should concern our-
selves ourselves with electron-ion collisions, and not ion-ion or electron-electron
collisions. Secondly, it tells us that electrons and ions diffuse at the same rate.

As long as the ions are singly-ionized, this result (equation 1.10) doesn’t
depend on the mass of the particles involved. However, if the ions are not singly-
ionized but multiply-ionized, then equation 1.10 tells us that the electrons would
diffuse at a faster rate than the ions. Question: how does it work itself out in
this case? Is it some sort of modified ambipolar diffusion?

1.3 Heuristic Estimate of Classical Diffusion Coefficient

As I’ve mentioned, classical transport concerns itself with diffusion of particles
in a straight, magnetized cylinder due to collisions. Before we calculate the dif-
fusion coefficient more rigorously, let’s try to see if we can get a simple heuristic
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estimate of the classical diffusion coefficient. Look back at equation 1.4. If
we know the average change in the gyro-center after each collision (∆x) and
the average time between collisions (∆t), we have an estimate of the diffusion
coefficient. Well, in a straight cylinder, the timescale between collisions ∆t is
approximately the electron-ion collision time 1/νei where4

νei =
4πne4

m2
eV

3
Te

ln Λ (1.11)

and Λ = 4π
3 nλ

3
D is the number of particles in a Debye sphere. The change in

the guiding-center position between collisions ∆x is approximately the electron
gyro-radius, ρe, where

ρe =
meVTe
eB

(1.12)

How do we know it’s the electron gyro-radius as the step size instead of the
ion gyro-radius or some other distance? This comes down to the fact that the
ions are so much heavier. Since ions are so heavy compared to electrons, their
velocity only changes by a tiny amount compared to an electron in a collision.
But the electron’s velocity, in an elastic collision with the effectively infinitely
massive ion, changes it’s velocity by an amount of order the electron velocity.
This can we written as ∆ve ∼ ve. Thus, from equation 1.9, we can see that
the change in the electron gyro-center position between collisions is about the
electron gyroradius. This means also that the ion gyro-center changes by ρe as
well, since their gyro-centers change by the same amount in a collision as we
saw in section 1.2. Having an estimate for ∆x and ∆t, we estimate our classical
diffusion coefficient to be

Dclass =
(∆x)2

∆t
= ρ2

eνei (1.13)

The key concept is that the step size is the electron gyro-radius, and the
timescale is the ion-electron collision time.

1.4 Classical Diffusion Coefficient: Multi-Fluid

Classic transport relates to the diffusion of particles and energy in a straight,
time-independent, collisional, magnetized cylinder. The picture to have in your
mind is a plasma in the geometry of an infinitely long, θ-symmetric and z-
symmetric cylinder, with no perturbations or waves in the plasma. There is
some r-dependent density profile, and the only way this density profile changes
is from collisions. This is sketched in figure 2. We’ll derive the classical diffusion
coefficient two separate ways - first, using the multi-fluid model and second,
using resistive (i.e. highly collisional) MHD5. In this subsection, we’ll derive the
classical diffusion coefficient using the multi-fluid model.

4Question: units of this? Get in non-gaussian units
5If we used ideal MHD, we would zero resistivity, and thus we would have the frozen-flux

theorem so there would be no diffusion. For that reason we use resistive MHD.
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Figure 2: An infinitely long cylindrically symmetric straight cylinder of plasma
in a straight magnetic field pointing in the z-direction. There is a radially-
dependent density profile n(r). This is the geometry used to study classical
diffusion.

To get a diffusion coefficient, we want to somehow relate the particle flux ~Γ
to the density gradient, as in equation 1.1. More specifically, in a cylindrical
geometry, we want an equation for the radial particle flux Γr, as this will tell
us the transport coefficient across the magnetic field, which is what we are
interested in.6 This will be our goal - to get an equation for the radial particle
flux, Γr ≡ nvr, in terms of the density gradient. We’ll start with the multi-fluid
equation of motion. The general multi-fluid equation of motion is, as we know
from GPP1,

mσnσ
∂~uσ
∂t

+mσnσ(~uσ · ~∇)~uσ = qσnσ ~E+qσnσ~uσ× ~B− ~∇·
←→
P σ+

∑
α6=σ

~Rσα (1.14)

We can make a few simplifications immediately for our cylindrical geometry.
Since our cylindrical geometry is assumed to have no time-dependence, we can
get rid of the partial-derivatives with respect to time. We’ll also assume any
velocities are small, so we can ignore the convective derivative term. We’ll
assume there are no macroscopic electric fields in our cylinder. We can argue
that this E-field assumption makes sense based on (i) net-neutrality of a plasma
over large scales, and (ii) the fact that electrons and ions diffuse at the same
rate in classical diffusion. We also assume that our plasma is collisional. In this
case, we can replace the pressure tensor with just a single scalar pressure, so

6I suppose we could try to calculate the poloidal particle flux, Γθ, as this would also involve
transport perpendicular to the magnetic field. This would be a lot harder to calculate though,
because we’d have to then assume that our density is not cylindrically symmetric.

9



that
~∇Pσ = ~∇P =

dP

dr
r̂

It is also true that

~Rei = −νeimene(~ue − ~ui) = −~Rie

where νei is the electron-ion collision frequency, or the inverse of the electron-ion
collision time. Note that I’ve defined ~Rσα to be the force per volume on species
σ due to collisions with species α. In irreversibles, we’ll calculate this to be

νei =
4πne4

m2
ev

3
Te

ln Λ (1.15)

This is a result we”ll examine in more detail in section 1.4.1. Lastly, we’ll assume
that the density and pressure of each species are equal, although the velocities
are not necessarily equal. With all of these assumptions, we’re left with three
terms in our multi-fluid momentum equations for the electrons and the ions.

dP

dr
r̂ = −en~ue × ~B − νeimen(~ue − ~ui)

dP

dr
r̂ = en~ui × ~B − νeimen(~ui − ~ue) (1.16)

Before we go any further, let’s stop for a moment and ask ourselves what these
equations are telling us physically. We have a radial pressure gradient balanced
by two terms, a magnetic force and an ion-electron collision force. We know
that uri = ure because the diffusion rates of ions and electrons must be the
same. Thus, the radial component of the friction force can’t balance the radial
pressure gradient - the magnetic force has to. Since ~B is in the z-direction,
we need there to be some θ-component of the velocities for the magnetic force
to balance the pressure gradient. Since the electrons and ions have different
charges, uθ needs to be in opposite directions for the ions and electrons. Thus,
the physical situation compatible with this equation is of each species having
a θ-velocity opposite in direction to the other species, acting in some relatively
complicated way against the pressure gradient and the collision force. With
this physical understanding, let’s solve these equations. Writing the equations
in component form, we have

dP

dr
= −enuθeB (1.17)

dP

dr
= enuθiB (1.18)

0 = −enurB − νeimen(uθi − uθe) (1.19)

Notice that I’ve set uri = uei = ur, since I know the ions and electrons diffuse
at the same rate. The first two equations tell us that uθi = −uθe. Thus, from
equation 1.19,

enurB = −2νeimenuθi
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uθi = − eBur
2νeime

(1.20)

Plugging this into equation 1.18, we have

dP

dr
= − e2B2

2meνei
nvr (1.21)

Using the ideal gas law P = 2nkBT , which is valid in a collisional regime, and
assuming the temperature gradient is zero for simplicity, we have

nvr = −4meνeikBT

e2B2
~∇n

Using V 2
Te = 2kBTe

me
and ρ2

e =
m2
eV

2
T,e

e2B2 , this can be rewritten as

Γr = −2ρ2
eνei~∇n = −2Dclass

~∇n (1.22)

where Dclass = ρ2
eνei. This is the classical diffusion coefficient.

Question: How does bill do it differently in the notes in class? It isn’t this
way..

1.4.1 The Coulomb Collision Operator and Collisional Momentum
Transfer

In the multi-fluid equations, we have a term ~Rσα which represents the momen-
tum per second per volume (force per volume) transferred to species σ due to
collisions with species α. This term is defined as

~Rσα = mσ

∫
C(fσ, fα)~vd3~v (1.23)

where C(fσ, fα) is the collision operator for collisions between species σ and
species α. From this definition, make sure you understand why this term rep-
resents the momentum per volume transferred to species σ due to collisions. In
GPP1, we argued that it would make sense for this term to be proportional
to the velocity difference between species σ and α, and asserted that we could
show that

~Rσα = −mσnσνσα(~uσ − ~uα) (1.24)

We’ve used this result earlier in this subsection. However, we’ve never actually
derived this result. It turns out it can be derived from the Coulomb collision
operator, using a Maxwellian velocity distribution function for the ions and
electrons whose average velocity is shifted to ~ui or ~ue. We derive this result
in the first homework. For now, let’s derive the Coulomb collision operator,
starting from the Vlasov-Maxwell equation and the Fokker-Planck operator.7

7We haven’t yet derived the Fokker-Planck operator, so I’m not sure what the assumptions
of the Fokker-Planck operator are. I think the collision model used by this operator is fairly
general. This operator gets derived in irreversibles. What Bill wants us to know is that the
first term represents a ’drag force’, while the second term represents a the effect of diffusion
in velocity space. Question: what else should we know?
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The Fokker-Planck operator is a pretty general collision operator which takes
into account the effect of ion-electron collisions on the electron distribution
function. The Fokker-Planck operator is

Cfp(fe, fi) = νeiV
3
Te

[
− ∂

∂vα

(
fe
∂hi
∂vα

)
+

1

2

∂

∂vα

∂

∂vβ

(
fe

∂2gi
∂vα∂vβ

)]
(1.25)

where Einstein summation notation has been used. We have that

VTe =
(2kBTe

me

) 1
2

and

hi(~x,~v, t) =
me +mi

mi

1

ni(~x)

∫
fi(~x,~v

′, t)

|~v − ~v′|
d3~v′ (1.26)

gi(~x,~v, t) =
1

ni(~x)

∫
|~v − ~v′|fi(~x,~v′, t)d3~v′ (1.27)

νei =
4πne4

m2
ev

3
Te

ln Λ (1.28)

The terms hi and gi are named the “Rosenbluth Potentials”.8 Note that the
factors of 1

ni(~x) are necessary for the Fokker-Planck operator to have the correct

units.9 For general fi, this is either tricky or impossible to solve. However, if

mi � me, then since the electrons have a thermal velocity
√

mi
me
∼ 40 times

larger than the ions, then the ions are effectively stationary on the timescales of
the electrons. More precisely, while the electron and ion distribution functions
have some spread in velocity space, the spread of the electrons is inevitably
much larger than the spread of the ions in velocity space, so relative to the
electron distribution function the ion distribution function looks like a delta-
function distribution in velocity space. Thus, we can approximate the ions as
having a delta-function potential, with a net velocity ~ui.

fi(~x,~v, t) = ni(~x)δ(3)(~v − ~ui(~x))

With this approximation, the Rosenbluth potentials reduce to

hi(~x,~v, t) ≈
1

|~v − ~ui(~x)|
(1.29)

gi(~x,~v, t) ≈ |~v − ~ui(~x)| (1.30)

We can make an additional simplification to the Fokker-Planck equation if we
define the variable ~w ≡ ~v − ~ui. Making this simplification, the derivatives with

8Named after the great plasma physicist Marshall Rosenbluth, who presumably derived
this collision operator for a plasma.

9Question: this is indeed the case, no?

12



respect to the components of ~v can be replaced with derivatives with respect to
the components of ~w. The Fokker-Planck operator simplifies to

C(fe, fi) = νeiV
3
Te

[
− ∂

∂wα

(
fe

∂

∂wα

1

|w|
)

+
1

2

∂

∂wα

∂

∂wβ

(
fe

∂2|w|
∂wα∂wβ

)]
(1.31)

We also have that

∂

∂wα

1

|w|
=

∂

∂wα

1√
w2
x + w2

y + w2
z

= − wα

(w2
x + w2

y + w2
z)

3
2

= − wα
|w|3

∂2

∂wα∂wβ
|w| = ∂

∂wα

wβ
|w|

=
δαβ
|w|
− wαwβ
|w|3

which allows our collision operator to simplify further to

C(fe, fi) = νeiV
3
Te

∂

∂wα

[(
fe
wα
|w|3

)
+

1

2

∂

∂wβ

(
fe
(δαβ
|w|
− wαwβ
|w|3

))]
We only need a few more simplifications to turn this into the Coulomb operator.
With some liberal use of the chain rule and einstein notation, we get

∂

∂wβ
(fe

δαβ
|w|

) =
δαβ
|w|

∂fe
∂wβ

− fe
wα
|w|3

∂

∂wβ

(
fe
wαwβ
|w|3

)
=
wαwβ
|w|3

∂fe
∂wβ

+ fe
δαβwβ
|w|3

+ 3fe
wα
|w|3

− 3fe
wαwβwβ
|w|5

=
wαwβ
|w|3

∂fe
∂wβ

+ fe
wα
|w|3

We can now see that the three fe
wα
|w|3 terms in the simplified collision operator

cancel each other, and we are left with our Coulomb collision operator.

Ccoul(fe, fi) = −νei
2
V 3
Te

∂

∂wα

[(
δαβ
|w|
− wαwβ
|w|3

)
∂fe
∂wβ

]
(1.32)

This is the result we wanted - the Coulomb collision operator. Remember that
~w = ~v−~ui. This is the collision operator acting on electrons as they collide with
ions. Note that this has the correct units, (L3V 3T )−1. In the first homework
assignment, we will show that if our electron distribution function is Maxwellian
with mean velocity ~ue, this equation gives us our equation for the collisional force
between particles, equation 1.24.

1.5 Classical Diffusion Coefficient: MHD

We’ve calculated the classical diffusion coefficient using a heuristic estimate, as
well as using the multi-fluid model. We can also calculate the classical diffusion
coefficient using MHD. Let’s do that now. Let’s assume, as in figure 2, that we
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have a time-independent, θ-symmetric, and z-symmetric plasma in a magnetized
infinite cylinder. Because of the symmetry of the problem, we only need to use
the following two MHD equations:

~J × ~B = ~∇P (1.33)

~E + ~u× ~B = η ~J (1.34)

where η = me
ne2 νei. Let’s write this equation in components.

dP

dr
= JθB (1.35)

JrB = 0 (1.36)

Eθ − urB = ηJθ (1.37)

Er + uθB = ηJr (1.38)

Since we have θ-symmetry and time-independence, Eθ must be zero. This comes

from Faraday’s law, ~∇× ~E = −∂ ~B∂t = 0.10 Thus,

Jθ = −Bur
η

Plugging this into equation 1.33, using the ideal gas law such that P = 2nkBT ,
and assuming constant temperature, we have

2kBT ~∇n = −B
2ur
η

Using η = me
e2nνei, this becomes

nur = −2mekBT

e2B2
νei~∇n

Γr = −2ρ2
eνei~∇n = −2Dclass

~∇n (1.39)

We’ve now calculated the classical diffusion coefficient using three methods - a
heuristic model, the multi-fluid model, and now resistive MHD. The classical
diffusion coefficient is very low. If we could achieve classical transport levels in
a magnetic confinement device, we would have reached ignition a long time ago.
Unfortunately, the toroidal geometry in a tokamak changes the particle orbits,
so that the transport levels are much higher than classical. Even if a tokamak
had zero turbulence, the lowest possible transport levels are neoclassical rather
than classical.

10We could also justify getting rid of Eθ by taking the flux surface (constant-r) average
over the cylinder, and not assuming θ-symmetry to calculate the average diffusion coefficient.
That is how Professor Tang does it in his lecture notes. It’s six or a half-dozen, the result is
the same.

14



Todo: discuss differences in physical model of multi-fluid classical transport
and MHD classical transport. Are they consistent? If not, why not? Why a
factor of 2 difference?

Note that the classical diffusion coefficient goes as 1/B2. This would be
great for confinement, because we could make significant improvements in the
confinement by increasing the magnetic field. In real life, increasing the mag-
netic field does have a big effect on improving confinement and the feasibility
of a fusion reactor. Unfortunately, it doesn’t have quite as strong an effect as
the 1/B2 dependence we calculate here.
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2 Collisional Neoclassical Transport

“With a faucet running at 15 gallons of water a
minute, you have the fuel to supply all the energy
in the United States that’s used today. Therefore,

it’s up to the physicist to figure out how to liberate
us from the need for having energy. And it can be

done, in practice.”

Richard Feynman

In the previous chapter, we studied the transport of charged particles due
to collisions in an infinitely long cylindrical geometry. Infinitely long anything
is a bit unrealistic given budget limitations. Fusion requires understanding
how plasmas work in real life. Let’s consider the more realistic situation of
a plasma confined by a toroidally shaped magnetic field. The transport of
charged particles due to collisions in a toroidal geometry with a realistic mag-
netic field configuration is called neoclassical transport. These notes will only
consider neoclassical transport in tokamaks, rather than stellerators. There are
two regimes of interest for neoclassical transport theory. The first is the highly
collisional regime, where a fluid description of the plasma can be used. The
second description is the low-collisionality regime, where we study the motion
of individual particles with long mean free paths, using a kinetic model. In this
chapter, we study the collisional plasma regime. In the next chapter, we study
the collisionless plasma regime.

We’ll start this chapter by introducing the toroidal coordinate system. We’ll
then estimate the neoclassical diffusion coefficient using basic physical argu-
ments, to preview where we’re going and also to give us a bit of physical intuition
for the basics of neoclassical diffusion. Lastly, we’ll calculate the neoclassical
diffusion coefficient for a collisional tokamak using resistive MHD. Todo: fix
this paragraph once I figure out what is going on with like and unlike particle
collisions

In a real tokamak, particles are not highly collisional. Their mean free path
is ∼ 1km, while the system size in a tokamak is of course much smaller. This
means that there is no such thing as the highly collisional neoclassical transport
regime. However, we want to understand the collisional regime before we go
onto the more difficult to solve collisionless regime. The diffusion coefficient for
collisional neoclassical diffusion is

DNeo = 2νeiρ
2
e(1 + q2) = 2DClass(1 + q2) (2.1)

where q is the safety factor. The safety factor is the number of times a field line
goes around toroidally before it goes around once poloidally. Typically, q � 1,
which means that DNeo � DClass.

2.1 Like and Unlike Particle Collisions

Question: What is deal with collisions? Why are we interested in electrons?
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2.2 Toroidal Coordinate Systems

If we’re going to understand diffusion in a Tokamak, we’re going to need to find
a coordinate system to work with. We could use a cylindrical coordinate system,
which works fine for many purposes. However, it isn’t going to work fine for our
purposes. In this class, we’ll use a brand-new coordinate system we’ve never
seen before. I call this coordinate system a toroidal coordinate system, which
is a rather logical name for it considering it describes coordinates in a torus. In
a toroidal coordinate system, our three coordinates are r, ζ, and θ,11 such that
~x = (r, ζ, θ). This coordinate system is illustrated in figure 3. In order to use
this coordinate system, we need to first choose a major radius R0. With a major
radius defined, ζ becomes the toroidal angle of rotation around the z-axis. This
is the same as the angle θ in cylindrical coordinates. At each ζ in our toroidal
coordinate system, we take a poloidal slice centered around the major radius
R0 and use a cylindrical coordinate system for this poloidal slice. The center of
the cylindrical coordinate system is the major radius R0. The coordinate r is
the distance from the major radius to ~x, while the angle θ is the angle between
~x and the outwards direction, where the outwards direction is ζ̂ × ẑ. Make sure
you understand the toroidal coordinate system - the rest of these notes aren’t
going to make very much sense if you don’t know what coordinate system we
are working in.

A few comments about the toroidal coordinate system. Firstly, each point
in space is no longer uniquely defined. If we wanted to uniquely define each
point in space, we could technically restrict ζ from 0 to π. However, we’re
not going to do that, because that would just be dumb. For example, if we
have a point which lies on the axis of the major radius at ζ = 3π

2 , we want
to be able to label the point (r, ζ, θ) = (0, 3π/2, 0) rather than have to label it
(r, ζ, θ) = (2R0, π/2,−π). It might make more sense to restrict r cos θ > −R0

or r < a where a is the minor radius of the tokamak, so that each point is
uniquely defined in a way that makes sense. However, whether that is useful or
not depends on what application we have in mind with our coordinate system,
so I won’t insist that we do that. Secondly, we have to define a direction for
positive θ. You can see in figure 3 how I’ve defined it. This means that positive-
θ for our poloidal cross-section points just like it normally would in a cylindrical
coordinate system. Thirdly, we need to redefine our definitions of distance and
of the ~∇ operator in this funky coordinate system. The infinitesimal distance
between two points in a toroidal coordinate system is

dx2 = dr2 + r2dθ2 +R2dζ2

where R = R0h, h = 1 + ε cos θ and ε = r
R0

. Intuitively, R is the distance from
the vertical z-axis to ~x, as shown in figure 3. h is just the ratio R/R0. If we did

some fancy math, we could show that the divergence of a vector ~A in toroidal

11Technically, the name of the greek letter ζ is zeta. I can never remember the names of
the rarely-used greek letters ζ and ξ (xi), so I just call them squiggly. Unfortunately the rest
of the scientific community doesn’t seem to have adopted this practice. I’m hoping it catches
on.
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Figure 3: Illustration of the toroidal coordinate system used throughout these
notes. In a toroidal coordinate system, there is a fixed major radius R0. The
three coordinates are ζ, the angle around the z-axis, r, the distance to the major
radius, and θ, the angle with respect to the major radius. Our coordinate system
is right-handed, in that θ̂ × r̂ = ζ̂, r̂ × ζ̂ = θ̂, and ζ̂ × θ̂ = r̂.

coordinates is

~∇ · ~A =
1

rh

[
∂

∂r
(rhAr) +

∂

∂θ
(hAθ) +

r

R0

∂

∂ζ
Aζ

]
(2.2)

Question: what is gradient in toroidal coordinates? What is curl? These end
up being important.

We will want to calculate averages of quantities over flux surfaces in our
tokamak. A flux surface for our purposes is the surface formed by taking all
the points on the torus at constant r. Fortunately, when we’re worried about
neoclassical transport theory in Tokamaks, tori are perfectly symmetric in ζ.
Thus, to get the average of some quantity A over a flux surface, we only need to
average A over θ at constant r. However, this isn’t as simple as just integrating
Adθ and dividing by 2π. This is because there is more surface area outside the
tokamak than inside the tokamak. Algebraically, this means we need to multiply
by a factor of h when doing the integration. Geometrically, our infinitesimal
area elements look like long connected ribbons which go around the torus at
constant θ with length 2πR = 2πR0h and width rdθ. This is a bit tricky to
visualize, so in figure 4 I’ve tried to illustrate this.12 Thus, our infinitesimal
area element dS is length times width, or dS = 2πRrdθ. So if we want to take

12This is also a bit tricky to illustrate.
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Figure 4: The green ribbon represents the infinitesimal area element dS used
to calculate the flux-surface average 〈A〉. Remember, the green ribbon is at
constant-θ.

the flux-surface average of A, we do

〈A〉 =
1∫
dS

∫
A(r, θ)dS =

1∫
h(r, θ)dθ

∫
A(r, θ)h(r, θ)dθ

where h = 1 + ε(r) cos θ and ε(r) = r
R0

. Since
∫ 2π

0
cos θdθ = 0, this reduces to

〈A〉 =
1

2π

∫ 2π

0

A(r, θ)h(r, θ)dθ (2.3)

With these tools in place, we are now ready to tackle transport in toroidal
geometries.

2.3 Heuristic Estimate of Neoclassical Diffusion Coeffi-
cient

Todo: preview where we’re going.
Curved magnetic field lines create particle drifts. In a tokamak without a

poloidal magnetic field, the combination of the grad-B and curvature drifts leads
to particles constantly drifting upwards (or downwards) in a tokamak and hence
quickly out of the device. To prevent particles from drifting out of the device,
a poloidal magnetic field is added to the machine by driving a toroidal plasma
current. This means that as particles orbit around the tokamak, they change
their position in θ in addition to in ζ. Although they are constantly drifting
upwards (or downwards), the poloidal magnetic field creates an orbit in θ which
is closed, or at least closed in the poloidal plane. This is illustrated in figure 5.
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Figure 5: In a tokamak with a poloidal magnetic field (represented by the
smaller black circle), the particles constantly drift upwards due to the curvature
and grad-B drifts. Despite the fact that they are constantly drifting upwards,
particles orbit in circles displaced vertically (represented by the red circle). In
other words, the poloidal magnetic field stabilizes particle orbits.

Neoclassical diffusion is larger than classical diffusion because of the effect
of curved magnetic field lines in toroidal geometries. As a particle drifts due to
the curved field lines in a tokamak, it no longer orbits around the magnetic field
line it started on. Instead, it will have some radial excursion from the radial flux
surface it started on. In a tokamak with a poloidal magnetic field, the radial
excursion will change with time (as the particle drifts radially), but after making
a full poloidal orbit, the particle ends up at the same r it started on. However,
suppose now that the particle collides at some point during it’s orbit. Because
the particle is drifting radially, the change in radial position of the guiding center
∆x (relative to the r-position at θ = 0) is equal to the radial excursion ξ at that
point.13 Sometimes that radial excursion will be positive and sometimes it will
be negative. This randomness means that the radial position of the orbiting
particles follows a random-walk diffusive process. The time between collisions
∆t is the collision time, ν−1

ei .
Let’s try to estimate the step-size ∆x, which is roughly the radial excursion

ξ. and use that to estimate the neoclassical diffusion coefficient. Let’s use the
physical picture we developed earlier to help us figure out the step size. The
two drifts we’d expect to see in a tokamak due to curved magnetic fields are the
grad-B drift and the curvature drift.

~vD =
mv2
⊥

2qB2
b̂× ~∇B +

mv2
‖

qB
b̂× (b̂ · ~∇b̂) (2.4)

13This statement ignores the physical reason for classical diffusion - particle collisions chang-
ing the guiding center position in a collision. For now, let’s just estimate the diffusion coef-
ficient due to radial excursions due to drifts. When we calculate the collisional neoclassical
coefficient using MHD, both effects are automatically taken into account.
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Figure 6: An illustration of the plasma and the toroidal field coils in a tokamak.
The toroidal magnetic field goes like 1/(R0 + r cos θ), which means that ~∇B
points inwards towards the z-axis.

Let’s think about what direction we expect these drifts to be in a tokamak.
Since the magnetic field is primarily toroidal, and the toroidal magnetic field of
a tokamak goes as B0

h (which we can calculate from Ampere’s law), then the

gradient of ~B points inwards, towards the z-axis of the tokamak. Thus, b̂× ~∇B
points upwards, as we can see in figure 6. Similarly, the b̂ · ~∇b̂ term points
inwards along the radius of curvature, so b̂× (b̂ · ~∇b̂) also points upwards. The
radial component of the drift therefore goes like |vD| sin θ, but for simplicity
we’ll just say

(vD)r ≈ |vD| ≈
mV 2

T

qBR0

Let’s assume the plasma current and toroidal magnetic field are in the positive-
ζ direction, so that the poloidal field points in the negative-θ direction and
a drifting particle will drift upwards (or downwards, for negatively charged
particles). Let’s assume we have an orbiting positively-charged particle (with
charge q = e) which has some positive vζ and starts at ζ = 0, θ = 0, and
r = r0. Thus, the particle starts on the outside of the tokamak. As it orbits,
it’s parallel velocity combined with the toroidal and poloidal magnetic field
means that the particle initially streams along a field line towards the bottom
of the tokamak. At the same time, the particle drifts up, off the field line it
started on. While the particle is in the bottom half of the tokamak, the radial
drift velocity is radially inwards. The radial excursion ξ at θ = −π/2 is the
maximum radial excursion ξmax, so r = r0 − ξmax. Once the particle gets
to θ = −π and begins orbiting in the upper half of the tokamak, the radial
drift velocity becomes radially outwards. At θ = −3π/2 = π/2, the particle
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reaches it’s maximum radial excursion , so r = r0 + ξmax. As the particle orbits
upwards towards θ = −2π = 0 again, the radial excursion ξ decreases towards
zero again. This is the same as the physical picture shown in figure 5. This
physical picture implies that the strength of the poloidal magnetic field relative
to the toroidal field impacts the radial excursion ∆x. Let’s calculate what we
expect the maximum radial excursion to be.14 Let’s define q to be the number
of times a magnetic field line goes around toroidally for each time the magnetic
field line goes around poloidally. At zero poloidal field, q =∞. As the poloidal
magnetic field increases, q decreases. q is called the “safety factor”. Based on
our definition of q, we might imagine that

q =
dζ

dθ
(2.5)

Note that this agrees with our definition - if a magnetic field line goes toroidally
around the tokamak 5 times for each time it goes around poloidally, then it goes
10π in ζ for every 2π in θ. This definition would give us a safety factor of 5,
as we’d want. Now, let’s try to figure out what the safety factor is in terms
of the other variables. Suppose we travel some infinitesimal distance along the
magnetic field line ds. The change in toroidal angle dζ due to an infinitesimal
distance along the field line will be proportional to the toroidal magnetic field
Bt, and inversely proportional to the distance from the z-axis R0h. The change
in poloidal angle dθ due to an infinitesimal distance traveled along the field line
will be proportional to the poloidal magnetic field Bp, and inversely proportional
to the distance from the major radius, r. Thus, our safety factor q is

q =
Btr

BpR0h

For simplicity, we’ll redefine the safety factor as (assuming h ≈ 1)

q =
Btr

BpR0
(2.6)

Question: what exactly is the precise definition of the safety factor q?
We still haven’t answered the question of what the radial excursion distance

ξmax is. Let’s put everything together. The radial excursion ξmax is approxi-
mately the radial drift velocity (vD)r times the time it takes for the particle to
go from zero to maximum excursion, or from θ = 0 to θ = −π/2. Well, the ‘con-
nection length’ or the distance traveled by a particle to make this half-orbit is
essentially the distance traveled toroidally, which is approximately 2πR0q/4.15

14Remember, the radial excursion is roughly the step size ∆x, which is what we’re trying
to calculate.

15Why is the connection length here 2πR0q/4? Well, the ‘connection length’ is normally
thought of as the distance a field line travels before it travels 2π in θ, ‘connecting’ back on
itself. Since q is the number of toroidal orbits per poloidal orbit, then in a poloidal orbit
a field line travels approximately q times the toroidal orbit distance, 2πR0. Here, however,
we’re only going π/2 in θ, so the connection length is 4 times smaller than the full connection
length.
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The typical parallel velocity is VT , so the time it takes to go from minimum
to maximum excursion is τconnection ∼ L

v‖
∼ πR0q

2VT
. Thus, the radial excursion

distance is

ξmax ∼ vDrτconnection ∼ vDr
πR0q

2VT
∼ mVT q

2eB
(2.7)

We’ve estimated is the maximum radial excursion. However, the maximum ra-
dial excursion is also the step size ∆x for neoclassical diffusion. This is because
if the particle make a collision at a random point in it’s orbit, then the difference
in radial position between where it started and where it collided is somewhere
between 0 and 2ξmax. Since we’re just doing an estimate of the diffusion coeffi-
cient, we can just take this to be ξmax. Remember, we’re considering electrons.
This means that

∆x ∼ ξmax ∼
mVTeq

2eB
∼ ρeq

This gives a neoclassical diffusion coefficient of

DNeo = (∆x)2/∆t ∼ νeiρ2
eq

2 = DClassq
2 (2.8)

Since typically q � 1 in a tokamak, this is much larger than the classical
diffusion coefficient. Let’s summarize what we’ve done, and make sure we un-
derstand why the collisional neoclassical diffusion coefficient is so much bigger
than the classical diffusion coefficient. We recognized that in a realistic toroidal
geometry, particles will orbit poloidally while drifting radially. The radial drift
velocity, times the time it takes for particles to drift from zero to maximum ex-
cursion, gives the maximum radial excursion. The time it takes particles to drift
between zero and maximum excursion is proportional to the connection length,
which depends on the safety factor. We then assumed the particles guiding
center changed by the approximately the maximum radial excursion between
collisions, which gave us ∆x and hence D.

Great, we’ve got an estimate for the collisional neoclassical diffusion coeffi-
cient, and we understand physically why it arises. If at this point, you still feel
confused about collisional neoclassical diffusion, good. We’ll have a lot more
to say about collisional neoclassical diffusion in chapter 3, once we understand
collisionless neoclassical diffusion. For now, let’s calculate the collisional neo-
classical coefficient more carefully using resistive MHD.

Question: Let’s assume toroidal velocity vζ doesn’t change in a collision. So
even if a particle collides after drifting ∆x in r, it’s still going to be drifting up,
which means it still forms a closed orbit. It seems like colliding won’t change
anything about the particle’s orbit unless the toroidal velocity changes. Is that
right?

2.4 Neoclassical Diffusion Coefficient: MHD

In chapter 1, we calculated the classical diffusion coefficient using the multi-
fluid model as well as using resistive MHD. We found that the classical diffusion
coefficient was ρ2

eνei. Then, in section 2.3, we estimated the neoclassical diffusion
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coefficient by looking at the radial excursions of passing particles due to their
drifts in curved magnetic fields. Now, we wish to calculate the neoclassical
diffusion coefficient using resistive MHD. We’ll see that up to a constant factor,
we reproduce the results of our passing-particle estimate. Our strategy is going
to be essentially the same as it was in chapter 1 when we calculated the classical
diffusion coefficient using resistive MHD. However, the equations are going to
be more complicated. We’ll assume our torus is symmetric toroidally, but not
poloidally. We’ll then take a flux-surface average of the transport to get a
flux-surface averaged diffusion coefficient. Our MHD equations are

ρ
d~u

dt
= −~∇P + ~J × ~B (2.9)

~E + ~u× ~B = η ~J (2.10)

We assume our tokamak is in steady-state, and the velocities are sufficiently
small that the convective derivative term is zero.16 The pressure is assumed to
depend only on r. We also know that the r-component of B must be zero, since
we have only poloidal and toroidal magnetic field components (and ~∇ · ~B = 0).
We assume that the magnetic field components, Bθ and Bζ , can be written as

Bθ =
Bp(r)

h
(2.11)

Bζ =
Bt(r)

h
(2.12)

You might be asking something along the lines of “but wait a second, isn’t Bζ
already the toroidal magnetic field? And isn’t Bθ already the poloidal magnetic
field?” Well yes, that is true. But what we’re doing is taking the θ-dependence
out of BP (r) and Bθ(r), so that we have a quantity which is a constant over
the flux-surface. With these assumptions, by components the MHD equations
become

dP

dr
= JζBθ − JθBζ (2.13)

0 = JrBθ (2.14)

0 = JrBζ (2.15)

For ohm’s law, assuming Eζ = 0, we have17

uζBθ − uθBζ −
∂φ

∂r
= η⊥Jr (2.16)

− urBθ = η‖Jζ (2.17)

urBζ −
1

r

∂φ

∂θ
= η⊥Jθ (2.18)

16Question: Is this why we set convective derivative to zero?
17Question: why is there no factor of h in the poloidal or radial electric fields? Depends on

what ~∇A in toroidal coordinates is.
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where η = meνei
ne2 and apparently η⊥ = η = 2η‖. We’re going to try to solve for

Γr = nur in terms of dn
dr , where we’ll use the constant temperature ideal gas

law so that dP
dr = 2kBT

dn
dr . From equations 2.14 and 2.15, we know that Jr = 0.

From equation 2.13, we have

Jζ =
dP

dr

1

Bθ
+ Jθ

Bζ
Bθ

(2.19)

In MHD, we have that ~∇ · ~J = 0. Since Jr = 0, and ∂
∂ζ → 0, then (using

equation 2.2 for the divergence in toroidal coordinates), we have

~∇ · ~J =
1

rh

∂

∂θ
(hJθ) = 0 (2.20)

This implies that hJθ is not a function of θ, or

Jθ =
f(r)

h
(2.21)

If we can figure out f(r), we’ll be practically finished. We can just use equations
2.19 and 2.17 to solve for ur, take the flux-surface average and multiply by n
to get the neoclassical diffusion coefficient. This will of course take some work,
but in principle if we can solve for f(r) then we can figure our the diffusion
coefficient. Isolating for 1

r
∂φ
∂θ in equation 2.18, we have

1

r

∂φ

∂θ
= urBζ − η⊥Jθ (2.22)

Using equation 2.17 to isolate for ur, we have

ur = −
n‖Jζ

Bθ
(2.23)

Plugging ur and Jθ into equation 2.22, we get

1

r

∂φ

∂θ
= −

η‖JζBζ

Bθ
− η⊥

f(r)

h
(2.24)

Now let’s take the average over θ of this equation.18 Since φ(0) = φ(2π), then
the LHS goes to zero.19

0 = − 1

2π

∫ [
η‖
Bζ
Bθ

Jζ + η⊥
f(r)

h

]
dθ (2.25)

Using equation 2.19, this becomes

0 =
1

2π

∫ [
η‖
Bζ
B2
θ

dP

dr
+
f(r)

h
(η⊥ + η‖

B2
ζ

B2
θ

)

]
dθ (2.26)

18Note that this is not the flux-surface average, as in equation 2.3. It’s a simple average
over θ.

19Note that the average of Eθ over θ is zero. Note that the flux-surface average of Eθ is not
necessarily zero, and Eθ is not necessarily always zero.
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Using equations 2.11 and 2.12, we can replace the Bζ and Bθ with Bt and Bp.

0 =
1

2π

∫ [
η‖h

Bt
B2
p

dP

dr
+
f(r)

h
(η⊥ + η‖

B2
t

B2
p

)

]
dθ (2.27)

Remember, Bp and Bt are only functions of r, while we’ll assume that pressure
is constant on each flux surface, so dP

dr has no θ-dependence. Our integral over
θ then only acts on h(r, θ). We have that20∫

hdθ =

∫
(1 + ε cos θ)dθ = 2π∫

1

h
dθ =

∫
1

(1 + ε cos θ)
dθ =

2π√
1− ε2

so equation 2.27 reduces to

0 = η‖
Bt
B2
p

dP

dr
+

f(r)√
1− ε2

(η⊥ + η‖
B2
t

B2
p

)

Solving for f(r) gives

f(r) =
−η‖ BtB2

p

(η⊥ + η‖
B2
t

B2
p
)

√
1− ε2 dP

dr

f(r) = −
√

1− ε2
Bt

[
1

1 +
η⊥B2

p

η‖B
2
t

]
dP

dr
(2.28)

From equation 2.6, we have that
Bp
Bt

= ε
q . In general, q � 1 and ε � 1, so the

term in the denominator is definitely small. We can therefore Taylor expand
the denominator to get

f(r) ' −
√

1− ε2
Bt

dP

dr
(1− η⊥ε

2

η‖q2
) (2.29)

Note that this is the negative of Professor Tangs’s lecture notes, equation 1.67,
because Bill uses a different sign convention for his toroidal coordinate system.
With f(r) in hand, we can solve for Jθ and Jζ , using equations 2.21 and 2.19.
Once we have Jζ , we can solve for ur using equation 2.23. We’ll then take n
times the flux-surface average 〈ur〉 to get the diffusion coefficient.21 Solving for
Jζ , we have

Jζ =
dP

dr

h

Bp
− 1

h

Bt
Bp

(√
1− ε2
Bt

dP

dr
(1− η⊥ε

2

η‖q2
)

)
20I’m not sure exactly how to do this second integral by hand, but that’s not what we’re

worried about here.
21This assumes that n is not a function of θ, which isn’t a great assumption. However,

we have no way of knowing a priori what n(θ) will be, so for the purposes of calculating a
diffusion coefficient it’s fine just to assume n is not a function of θ.

26



Jζ =
1

Bp

dP

dr

[
h− 1

h

√
1− ε2(1− η⊥ε

2

η‖q2
)

]
(2.30)

Thus, ur becomes

ur = −
η‖

B2
p

dP

dr

[
h2 −

√
1− ε2(1− η⊥ε

2

η‖q2
)

]
(2.31)

Taking the flux surface average as in equation 2.3,22 and using 1
2π

∫
hdθ = 1

and23 1
2π

∫
h3dθ = 1 + 3

2ε
2, and

√
1− ε2 ≈ 1− ε2

2 , we have (ignoring factors of
ε4)

〈ur〉 = −
η‖

B2
p

dP

dr

[
1 +

3

2
ε2 − 1 +

ε2

2
+
η⊥ε

2

η‖q2

]
〈ur〉 = −

η‖

B2
p

dP

dr

[
2ε2 +

η⊥ε
2

η‖q2

]
Using the ideal gas law, and setting P = 2nkBT , this becomes

〈ur〉 = −
4η‖ε

2kBT

B2
p

dn

dr
(1 +

η⊥
2η‖q2

) (2.32)

We can use a whole bunch of different results from before to simplify this ex-
pression. Firstly, remember that parallel resistivity is lower than perpendicular
resistivity, so η‖ = 1

2η⊥. Secondly, remember that η⊥ = η = meνei
ne2 .24 Also

from the definition of q, we have that Bp = Bt
ε
q ≈ B ε

q . Putting these results
together, we get

n〈ur〉 = −νei
2mekBT

e2B2
(q2 + 1)

dn

dr
= −νeiρ2

e(1 + q2)
dn

dr
(2.33)

Thus,
DNeo = νeiρ

2
e(1 + q2) (2.34)

This is the classical diffusion coefficient calculated using MHD, νeiρ
2
e, times

a factor (1 + q2). The first term represents the contribution due to classical
diffusion, while the second term represents the collisional neoclassical diffusion
coefficient. Since the safety factor q is generally much larger than 1 in fusion
devices, the neoclassical diffusion coefficient is much larger than the classical
diffusion coefficient. Note that within a factor of 2, this agrees with the heuristic
model for the neoclassical diffusion coefficient we estimated in section 2.3. The
heuristic model, which was based on single-particle drifts, gives essentially the
same result as MHD, which is based on a highly-collisional fluid model.

Let’s recap what just happened. We set out to calculate the neoclassical
diffusion coefficient using MHD. Since MHD is a fluid model which assumes

22Remember, before we didn’t take the flux-surface average, only the simple average over
θ. Now we’re taking the flux-surface average.

23Using Mathematica, admittedly. We could of course expand (1 + ε cos θ)3 and perform a
bunch of simpler integrals if we wanted to prove this.

24Question: What is going on here in the notes? Which is right?
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high collisionality, then we expect this model to give us the right results in the
limit where our plasma is very collisional.25 We then solved the MHD equations
in a toroidal geometry. To solve the equations, we had to find Jθ. To so do,
we used ~∇ · ~J = 0, to find that Jθ = f(r)/h. We were then able to solve for
f(r) by taking an average over θ to get rid of Eθ. With f(r) in hand, we were
able to solve for ur. We then took the flux-surface average of ur, multiplied by
n, and used the ideal gas law to get our diffusion coefficient. Our neoclassical
diffusion coefficient is much larger than the classical diffusion coefficient, by
a factor (1 + q2). The physical reason for this increase in transport over the
classical regime is the radial excursion of particles as they drift due to grad-B
and curvature drifts.

In section 2.3, we estimated the neoclassical diffusion coefficient using the
radial excursion of passing particles as they orbit poloidally around the toka-
mak. This is indeed the physical reason for the increase in D for the neoclassical
regime. However, in order for the collisional fluid model to be accurate, these
passing particles must (on average) collide multiple times per poloidal orbit.
That means the condition on the validity of the collisional model is that the col-
lision frequency νei must be larger than the connection frequency, τ−1

connection.26

This condition is
νei

τ−1
connection

∼ νeiR0q

VTe
� 1

2.5 Effects of non-zero Eζ

Earlier in the chapter, we discussed how a poloidal magnetic field was necessary
to prevent particles from drifting out of a tokamak. To create this poloidal
magnetic field, a toroidal current is driven. To drive this toroidal current, we
drive a toroidal electric field. To drive the toroidal electric field, we need a curl
of ~E around the torus. By Faraday’s law

∮
~E · d~l = −∂ΦB

∂t , to create a non-
zero Eζ we need a changing magnetic flux through the center of the tokamak.
To do this, tokamaks have a giant solenoid at the center of the machine which
continually ramps up the current,27 changing the vertical magnetic field and
creating the toroidal electric field Eζ and hence the toroidal current.28 This
toroidal current also heats the plasma.

We can repeat the calculation of the previous section, including the possibil-
ity that there is a toroidal magnetic field Eζ , and show that the radial particle

25We’ll have more to say about when using the fluid model is justified in a moment.
26Remember, the connection time τconnection is the time it takes for a particle to make a

poloidal orbit, i.e. the time for a particle to follow a field line around 2π in θ. The word
‘connection’ is a bit of a misnomer because in general, field lines don’t connect on themselves
after going around 2π in θ.

27Question: does it ramp up? or does it ramp down?
28This process is one of the many reasons that we need to make a lot of progress before a

steady-state tokamak is a realistic goal: the solenoid can’t ramp up in current forever, which
means we have a limit to the pulse length. It would be great if we could find a way to do
steady-state current drive.
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flux becomes

Γr = −(DNeo +DClass)
dn

dr
− n0

Eζ
Bp

ε2

This is one of the homework assignments, so I will not reproduce it in these
notes. Typically, the toroidal electric field is quite small, only a few volts per
2πR. In the homework, we then make a numerical estimate for this last term,
and see that it is indeed very small relative to the other two terms, which implies
that the toroidal electric field only negligibly changes the neoclassical transport
in the collisional regime. In the collisionless regime, the electric field will become
important.

2.6 Neoclassical Diffusion as a Result of Parallel Forces

Let’s look at collisional neoclassical diffusion more generally. We’ll look at the ζ-
component of the multi-fluid equation, where a toroidal electric field is allowed.
We’ll see that the radial particle flux is due to a combination of forces parallel
and perpendicular to the magnetic field. It turns out that the perpendicular
forces are the forces which give rise to classical diffusion, while the parallel forces
gives rise to neoclassical diffusion. Todo: do i want to say more?

We’ll use the same toroidally-symmetric coordinate system we’ve been using,

where we have a magnetic field in the toroidal direction Bζ = BT (r)
h and the

poloidal direction Bθ = BP (r)
h . We’ll also suppose we have a toroidal magnetic

field Eζ . We’ll start with the multi-fluid momentum equation in a toroidal
geometry.

mσnσ
d~uσ
dt

= qσnσ( ~E + ~uσ × ~B)− ~∇Pσ +
∑
α

~Rσα (2.35)

Since we’re looking at diffusion, we can neglect the LHS of the momentum
equation. We do this because (a) for diffusion, we are looking at steady state,
so ∂

∂t → 0 and (b) since the only velocities are due to diffusion, we expect them

to be small which allows us to neglect the ~uσ · ~∇~uσ term since it is second-order
in velocity. Looking at the ζ-component of this equation, we have

qσnσ(Eζ − urBθ) +
∑
α

Rζσα = 0 (2.36)

Now let’s take the flux-average 〈〉 of this equation, where as usual flux-average
means averaging over a constant-r surface.

〈qσnσ(Eζ − urσBθ) +
∑
α

Rζσα〉 = 0 (2.37)

qσ〈nσurσBθ〉 = 〈qσnσEζ +
∑
α

Rζσα〉

Remembering that the radial flux Γrσ = 〈nσurσ〉, we can solve for the radial
flux in terms of the electric field and frictional force terms. Using Bθ = BP (r)/h
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and 〈 1
h 〉 = 1

2π

∫
1

1+ε cos θdθ = 1√
1−ε2 ≈ 1 this becomes

qσBP 〈nσurσ〉 = 〈qσnσEζ +
∑
α

Rζσα〉

Γrσ = 〈nσuσr〉 =
1

qσBP
〈
∑
α

Rζσα + qσnσEζ〉 (2.38)

We have, from BT � Bp, that b̂ ≈ ζ̂ + BP
B0
θ̂. We also have that Eζ ≈ E‖, where

we’ve ignored E⊥ because Question: why?. This means that29

Rζσα = ζ̂ · ~Rσα = ζ̂ · [b̂R‖σα + ~R⊥σα] ≈ R‖σα + ζ̂ · ~R⊥σα (2.39)

Making these substitutions, the radial particle flux due to collisional neoclassical
diffusion becomes

Γrσ =
1

qσBP

〈
[
∑
α

R‖σα + nσqσE‖] +
∑
α

ζ̂ · ~R⊥σα
〉

(2.40)

This is the result we wanted - we have the neoclassical collisional radial particle
flux in terms of the forces parallel and perpendicular to the magnetic field.

Why are we interested in this result? Well, it tells us about the origins of
the various types of diffusion. The second term, 〈

∑
α ζ̂ · ~R⊥σα〉, gives us classical

diffusion. This is the same forces which we found in chapter 1, where ζ̂ would
be the z-axis. In the infinitely long cylinder from chapter 1, there would be
no forces parallel to the cylinder. The first term is what gives us neoclassical
diffusion.

But this general result tells us about the origins of the classical diffusion and
neoclassical diffusion coefficients. The second term, 1

qσBP
〈
∑
α ζ̂ · ~R⊥σα, gives us

the classical diffusion coefficient. Classical diffusion in a fluid model (collisional
regime) has to do with the perpendicular forces on particles. The first term
in brackets gives us the neoclassical diffusion coefficient. The parallel forces on
particles in the collisional regime give us the neoclassical diffusion.

Question: what is meant by E‖ effects being balanced by R‖ei?
Look back at PS diffusion equation - we have perp diffusion leading to clas-

sical diffusion. The parallel diffusion leads to classical diffusion.
Todo: this should probably be moved to chapter 2 somehow, right?
Todo: write about plateau too
Let’s evaluate when the collisionless model of diffusion is valid: physically, we

want a particle to be able to execute a bounce orbit before being scattered. If it
is scattered before it completes a bounce orbit, then the radial excursion for the
trapped particle is always going to be less than ξBσ, and the calculations we’ve
done for the diffusion coefficient don’t work. Mathematically, this condition
comes out to

νeff � ωB

29Question: I’ve ignored the factor of Bζ/B0, although Bill keeps it. I should ignore it,
right?
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or
νeiqR0

VT ε
3
2

� 1 (2.41)

If this is satisfied, then the neoclassical diffusion coefficient is approximately
given by equation 3.28.
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3 Collisionless Neoclassical Diffusion

“Just because Feynman says he is pro-nuclear
power, isn’t any argument at all worth paying

attention to because I can tell you (for I know) that
Feynman really doesn’t know what he is talking
about when he speaks of such things. He knows

about other things (maybe). Don’t pay attention to
“authorities”, think for yourself.”

Richard Feynman

The previous chapter derived the neoclassical diffusion coefficient two sepa-
rate ways. First, using a heuristic model for orbiting particles in a tokamak, we
estimated the neoclassical diffusion coefficient based on the radial drifts of par-
ticles as they follow the twisted magnetic field lines in a tokamak, orbiting in θ.
Second, we used resistive MHD to calculate the flux-surface averaged radial ve-
locity ur due to density gradients in a toroidal geometry. We then used the ideal
gas law to get a neoclassical diffusion coefficient for a collisional plasma. You
might find it surprising that these models gave us roughly the same estimate for
the neoclassical diffusion coefficient. After all, one is a collisional fluid model,
while the other is a model based on single-particle drifts. I certainly found it
surprising. However, this really shouldn’t be surprising, if we remember from
GPP1 that summing the particle drift currents over species gives us the perpen-
dicular component of the doubly-adiabatic MHD equations. The single-particle
drift picture, accounting for the magnetization current, is equivalent to the fluid
description of a plasma.

The analysis of the previous chapter, while important to understand, is
ultimately wrong for a couple of reasons. The first is that in any real high-
temperature plasma, the plasma is almost certainly not collisional, and therefore
not in a Maxwellian distribution. For that reason, we should really be using
a kinetic model rather than a fluid model to understand the diffusive transfer
of heat and energy in a tokamak. The second is that in the single-particle
drift model we used in the previous chapter, we didn’t take into account the
fact that some of the particles aren’t passing particles, meaning that they don’t
make a full orbit in θ, but are reflected backwards by the gradient in B, like
in a magnetic mirror. We call these particles ‘banana particles’ or ‘trapped
particles’. Trapped particles are a small fraction of the overall population in
a tokamak, yet account for a disproportionately large amount of the overall
transport. Essentially, the physical reason that the trapped-particle population
is so important for transport is because they have such small v‖. This means
that they have much more time to drift radially, hence their radial excursion
ξB

30 is much higher. It also means that they are more easily scattered in velocity
space from trapped particles to passing particles.

You might be wondering why the fluid model doesn’t take into account the

30The B stands for banana, so ξB is the radial excursion of the banana particles.
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Figure 7: The magnetic field around a loop of wire. We can see that for this
toroidal current, the poloidal magnetic field is stronger towards the center of
the wire loop. Similarly, the poloidal magnetic field in a tokamak due to the
toroidal field is stronger on the inside of the tokamak. This is why we write
Bθ =

Bp
h .

trapped-particle population. After all, if we have a Maxwellian distribution of
particles, some of those particles will of course be in the trapped particle popu-
lation. We’ll have more to say about this later in the chapter, but essentially the
reason for this is the high-collisionality assumption of the fluid model. In the
fluid model, those particles which are in the trapped-particle population collide
multiple times before they execute a full banana orbit, and are quickly scattered
from the trapped particle population to the passing particle population. In the
fluid model, therefore, no single particle is able to orbit long enough without
colliding to reach the full banana radial excursion ξB , even though at a given
moment in time some fraction of the particles are in banana orbits. The fluid
model takes into account the drift a typical particle has if it has many collisions
during it’s orbit.

3.1 Trapped Particles

In a tokamak, the magnetic field is strongest nearest to the z-axis, both for the
toroidal and poloidal field components. The toroidal magnetic field goes like
1/h or 1/R. We saw in figure 6 (back in chapter 2) that we can get this result

from a simple Ampere’s law calculation, taking
∫
~B · d~l around the torus. It

turns out that not only is the toroidal magnetic field stronger nearer the z-axis,
but the poloidal magnetic field is stronger there are well. We can visualize by
looking at the magnetic fields due to a current loop like in figure 7. Although
Jζ is spread out over the volume of the tokamak and not carried in a wire, this
figure captures the essence: there is a geometric enhancement of the poloidal
magnetic field nearer the vertical axis due to a toroidal current in a tokamak.
Unfortunately, we don’t have a simple Ampere’s law calculation to give us the
poloidal magnetic field. Based on the above argument, we can see that following
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model of the magnetic field in a tokamak looks reasonable:

~B =
1

h
(Btζ̂ +Bpθ̂) (3.1)

where once again h = 1+ε cos θ and
Bp
Bt
� 1. Using this model, we can calculate

the magnitude of B.

|B| =

√
B2
t +B2

p

(1 + ε cos θ)
≈ B0(1− ε cos θ)

The magnitude of the magnetic field depends on θ. The magnetic field is, for a
given r, weakest at θ = 0, and increases gradually until it reaches a maximum
at θ = π. Suppose we put a particle in our tokamak at θ = 0, r = r0, and ζ = 0
with some velocity v‖ and v⊥, and watch what happens. Notice that, for a given
r, we’ve inserted the particle at the minimum |B|. As our particle travels along
the twisted magnetic field of the tokamak, it will change in θ, so the magnetic
field must increase at it follows a field line until it reaches a maximum at θ = π.
What other situation in plasma physics does this remind you of? I’ll give you a
hint - for collisionless particles in slowly changing fields, we have the adiabatic

invariant µ =
mv2⊥
2B . We also have constant-energy E =

mv2‖
2 +

mv2⊥
2 . Perhaps

you’ve recognized by now that a particle drifting in a tokamak is a lot like a
particle drifting in a magnetic mirror machine. Unlike particles in a magnetic
mirror, however, untrapped (i.e. passing) particles don’t get lost outside of the
device, but instead continually orbit poloidally. These untrapped particles are
called passing particles. As we will show in section 3.1.1, the trapped particles
are those particles which satisfy

( v2
‖

v2
⊥

)∣∣∣
Bmin

≤ 2ε (3.2)

Since ε is a small number, this means that the trapped-particle population is
generally a small fraction of the overall population, but increases as we increase
in r.

3.1.1 Condition for Trapping

Let’s derive this trapped particle condition now. We’ll follow essentially the
same steps we used to derive the trapping condition for a magnetic mirror. We
have that

mv2
‖

2
+ µB = E = const

For a particle which is just barely trapped, v‖ becomes 0 at B = Bmax, meaning
all the energy is in perpendicular motion at Bmax. This can be written as

m

2
v2
‖|Bmin +

m

2
v2
⊥|Bmin ≤

m

2
v2
⊥|Bmax = µBmax
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m

2
v2
‖|Bmin +

m

2
v2
⊥|Bmin ≤

(
m

2Bmin
v2
⊥|Bmin

)
Bmax

Dividing by m
2 v

2
⊥|Bmin and rearranging, we have(

v2
‖

v2
⊥

)∣∣∣∣
Bmin

≤ Bmax
Bmin

− 1 (3.3)

Using |B| ≈ B0(1− ε cos θ), we have

Bmax
Bmin

− 1 =
1 + ε

1− ε
− 1 ≈ (1 + ε)(1 + ε)− 1 ≈ 2ε

Thus, the condition on trapping can be written as(
v2
‖

v2
⊥

)∣∣∣∣
Bmin

≤ 2ε (3.4)

Great, so we’ve derived the trapping condition of equation 3.2. With a bit more
algebra, we can write this condition a different way, which will be helpful to us
later in this chapter. For barely trapped particles, E

µ = Bmax. For untrapped

particles, v‖ never goes to 0. Thus, E
µ > Bmax for untrapped particles. For

trapped particles, E
µ < Bmax. Actually, the lowest E

µ could be is Bmin, which
is when v‖ = 0 at Bmin. This gives us, for trapped particles,

Bmin <
E

µ
< Bmax (3.5)

Now, let’s define λ = µB0

E . Dividing both sides of this expression by B0, we
have

1− ε < 1

λ
< 1 + ε (3.6)

Taking the inverse of this expression, we get

(1− ε)−1 > λ > (1 + ε)−1

For small ε, this becomes
1 + ε > λ > 1− ε (3.7)

This is another way of writing our condition for trapped particles, in addition
to equation 3.2. We can see the conditions for trapped and untrapped particles
summarized in table 1. Note that the intuition for λ ≡ µB0

E is that it is smaller
when v‖ is large relative to v⊥ and larger when v⊥ is large relative to v‖. With
this intuition in our minds, it should make sense that particles at larger λ should
be trapped.

Take a look at figure 8. This figure is a bit tricky to figure out, so let’s go
through it. The solid line at the top represents the maximum λ allowed at a
given ε = r/R0. The x-axis represents the angle θ, so the center is θ = 0 while
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Table 1: Conditions for Trapped and Untrapped particles in terms of λ ≡ µB0

E

Trapped Partices Untrapped particles
1 + ε > λ > 1− ε 1− ε > λ > 0

Figure 8: A plot of λmax as a function of θ. The dashed line represents the
function λ = 1 − ε, which is the dividing line between trapped and untrapped
particles, as seen in table 1.

the edges are θ = π. It makes sense that λmax can be highest in the center,

since λ = µB0

E =
mv2⊥B0

2BE and B is lowest at θ = 0. The particles with λ in
the red region are the trapped particles, while those in the green region are the
passing or untrapped particles. λ = 1 − ε is the dividing line between trapped
and untrapped particles, which is shown by the dashed line in this figure.

3.1.2 Fraction of Trapped Particles

Assuming an isotropic velocity distribution, we can show that the fraction of

trapped particles is
√

1− B
Bmax

, while when we average this over a toroidal flux

surface, the fraction of trapped particles becomes 4
π

√
ε
2 . This is assigned as a

homework problem, but it is important enough for understanding the physics
that I will work it out in these notes. The fraction of trapped particles at any
given point in our tokamak is given by√

1− B

Bmax
(3.8)

Let’s prove this. At an arbitrary point p in our tokamak, we have that |B|p =
B0(1 − ε cos θ). We also have that the particles which are just barely trapped
at p are those who have zero parallel velocity at Bmax. This trapping condition
can be written as

m

2
v2
‖|p + µB|p ≤ µBmax
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Figure 9: A plot of the trapped and untrapped particles in |v‖| and |v⊥| space.

Dividing by µBp, we have (
v2
‖

v2
⊥

)
p

≤ Bmax
B|p

− 1 (3.9)

Note that our trapping condition 3.4 is just a special case of this equation, where
we replace p with a point at θ = 0. We can rewrite this as∣∣∣∣ v‖v⊥

∣∣∣∣
p

≤

√
Bmax
B|p

√
1− B|p

Bmax

But Bmax
Bp

= 1+ε
1−ε cos θ ≈ 1 + O(ε) while 1 − Bp

Bmax
= 1 − 1−ε cos θ

1+ε = O(ε). We’ll

therefore ignore the first term in favor of 1, and keep the second term.∣∣∣∣ v‖v⊥
∣∣∣∣
p

≤
√

1− Bp
Bmax

(3.10)

We’ve plotted equation 3.10 in figure 9. If our velocity distribution is isotropic
at each point in space, then each angle dΘ in velocity space is equally populated.
Therefore the fraction of particles which are trapped is Θ

π/2 where Θ ≈ tan Θ =

(1− B
Bmax

)1/2. This means the fraction of trapped particles is

2

π
(1− B

Bmax
)1/2

This is the result Professor Tang cites, ignoring a factor of 2
π . Question: This

is different by a factor of 2/π, right? When we average the number of trapped
particles over a flux surface, we should find that the total fraction of trapped
particles is 4

π

√
ε
2 . Let’s show this. Taking a flux-surface average, as we know,

involves multiplying by h
2π and integrating over θ, as in equation 2.3. We can

write the fraction of trapped particles as

2

π

√
1− B

Bmax
=

2

π

√
1− 1− ε cos θ

1 + ε
≈ 2

π

√
ε+ ε cos θ =

2

π

√
ε
√

1 + cos θ
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Let’s integrate this over a flux surface.

1

π2

√
ε

∫ 2π

0

√
1 + cos θ(1 + ε cos θ)dθ

We could do these integrals using trigonometric substitution, or simply plug

them into Mathematica. Taking the second approach, we find that
∫ 2π

0

√
1 + cos θdθ =

4
√

2 and ε
∫ 2π

0

√
1 + cos θ cos θdθ = 4

√
2

3 ε. Since ε � 1, to lowest order in ε the
fraction of trapped particles are

4

π2

√
2ε (3.11)

This is the same result Professor Tang gets in homework 3, except with the
additional factor of 2

π which carries over from the previous calculation. Note that

the important result is the ε1/2 dependence. The fraction of trapped particles
is small at small ε but grows as r increases.

3.1.3 Effective Collision Frequency for Trapped Particles

The collision frequency for electron-ion collisions is

νei =
4πne4

m2
eV

3
Te

ln Λ

The existence of an electron-ion collision frequency leads us to imagine that, on
average, every ν−1

ei seconds an electron collides with an ion and it’s velocity at
that moment is abruptly changed randomly. However, collisions in a plasma are
a bit more complicated than that simple model. For a wonderful discussion of
collisions in a plasma, see Bellan sections 1.8, 1.9, 1.10. Bellan writes “Grazing
(small angle) collisions occur when the test particle impinges outside the shaded
circle and so occur much more frequently than large angle collisions. Although
each grazing collision does not scatter the test particle by much, there are far
more grazing collisions than large angle collisions and so it is important to
compare the cumulative effect of grazing collisions with the cumulative effect of
large angle collisions.” Bellan goes on to calculate that if there are many particles
in a Debye sphere, then grazing collisions dominate large angle collisions. Let’s
investigate the diffusion of trapped particles in velocity space.

Looking at equation 1.5, we see that the mean-squared distance traveled due
to a random-walk (diffusive) process 〈x2〉 goes like Dt, where t is the time over
which the random-walk occurred. This tells us that the time t it takes for a
particle to, on average, diffuse a RMS distance xrms is

t ∼ 1

D
(xrms)

2

For random walks in angular displacement Θ, we can write this instead as

t ∼ 1

D
(Θrms)

2 (3.12)
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How does this relate to the effective collision frequency of trapped particles?
Why would we expect trapped particles to collide any differently than untrapped
particles? Shouldn’t their collision frequency be the same? This is all a bit
tricky, so pay attention. Actually, yes, the collision frequency of trapped and
untrapped particles is the same, in the sense that the collision diffusion coeffi-
cient D is the same for trapped and untrapped particles. There is not a different
mechanism which causes collisions for trapped particles to be any different than
for untrapped particles. However, what (νei)

−1 really represents is the 90 degree
scattering time, or the average time it takes for a particle to scatter 90 degrees
in velocity space due to the cumulative effect of grazing collisions. For trapped
particles, a particle only needs to diffuse roughly Θ ∼ (2ε)

1
2 in velocity space31

to be scattered out of the trapped particle population (as opposed to 90 degrees
for a particle to be considered scattered when we normally consider collisions).

Let’s look at equation 3.12. For normal scattering, the scattering time is
t = ν−1 and the RMS angular displacement Θrms is π

2 radians. For scattering

of trapped particles, the RMS angular displacement Θrms is sin (2ε)
1
2 ≈ (2ε)

1
2 ,

so the scattering time changes relative to the 90 degree scattering time by a
factor

(
(2ε)

1
2

π
2

)2 =
8ε

π2
∼ ε

Since the scattering time is smaller by a factor of about ε, the scattering fre-
quency is larger by a factor of roughly 1/ε. More precisely,

νeffσ ∼ ν90σ/ε (3.13)

where νeffσ is the effective scattering frequency for trapped particles of species
σ due to collisions and ν90σ is the effective 90 degree scattering frequency for
particles of species σ.32

We can derive the effective collision frequency for trapped particles a different
way, using the Lorentz collision operator. Remember, we derived the Lorentz
collision operator from the Fokker-Planck equation back in section 1.4.1. This
collision operator is

Ccoul(fe, fi) = −νei
2
V 3
Te

∂

∂wα

[(
δαβ
|w|
− wαwβ
|w|3

)
∂fe
∂wβ

]
(3.14)

where ~w = ~v − ~ui. Now, it turns out that we can write the Lorentz collision
operator using a different set of variables,

Ccoul(fe, fi) = meνei
v‖

B

∂

∂µ

[
(v‖µ)

∂fe
∂µ

]
(3.15)

where µ =
mev

2
⊥

2B , E = mev
2

2 , B = B0/h, v‖ = v
√

1− λ
h , h = (1 + ε cos θ), and

λ = µB0

E . Todo: prove this. Since λ = µB0

E , then ∂
∂µ = ∂

∂(λE/B0) = B0

E
∂
∂λ . Thus,

31To convince yourself of this, look at equation 3.4. When I say velocity space, really I
mean velocity space at Bmin, where θ = 0.

32Typically, we just write this as νei for electrons.
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the Coulomb collision operator (equation 3.15) becomes

Ccoul(fe, fi) = meνei
v‖B0

EB

∂

∂λ

[
(v‖µ

B0

E
)
∂fe
∂λ

]

Using ξ =
v‖
v =

√
1− λ

h for trapped particles, this becomes

Ccoul(fe, fi) = 2νei
hξ

v

∂

∂λ

[
(ξvλ)

∂fe
∂λ

]

Ccoul(fe, fi) ∼ νei
hξ2λ

(∆λ)2
fe (3.16)

The Coulomb operator is in general of order νeife. Let’s estimate it’s magnitude
here. For trapped particles, we found earlier that the condition for trapping can
be written as

1− ε < λ < 1 + ε

Thus, for trapped particles h ∼ 1, λ ∼ 1, ξ =
√

1− λ
h ∼
√
ε, ∆λ ∼ ε. Plugging

these estimates into our estimate for the Coulomb operator, equation 3.16, we
have

Ccoul(fe, fi) ∼
νei
ε
fe (3.17)

so the effective collision frequency for trapped particles is once again higher by
a factor 1

ε .
Question: this seems to contradict the previous statement, where I said

there wasn’t a different mechanism for collisions with trapped particles and
untrapped particles, it was just that they diffused more easily. But here the
collision operator is actually different. What is going on here? Is there really a
contradiction? What is the resolution?

3.1.4 Bounce Frequency of Trapped Particles

What does the bounce frequency of a trapped particle mean? In a mirror
machine, we have particles bouncing between the two ends of a mirror, with a
certain frequency. Similarly, in a tokamak, trapped particles are bouncing back
and forth in θ, between θ0 and −θ0, as in figure 10.

The bounce frequency is 2π
τB

, where τB is the bounce period. Of course, these
are just definitions, we’ll need to calculate τB . Looking at figure 10, we can see
that

τB =

∮
dt = 2

∫ θ0

−θ0
(
dθ

dt
)−1dθ = 2

∫ θ0

−θ0

dθ

θ̇

To solve this, we need to relate θ̇ to v‖. To do so we’ll use our old friend,
the safety factor q. Since q tells us roughly how many times a magnetic field
line (and hence a particle) goes around toroidally for every time it goes around
poloidally, then the toroidal distance a field line travels when it orbits 2π in
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Figure 10: Trapped particles in a tokamak bounce between θ0 and −θ0, while
drifting radially outwards or inwards. The guiding center of these poloidal orbits
(green) are shaped like bananas, so they are called banana orbits. Not shown is
their toroidal motion.

poloidal angle is roughly q2πR0.33 This means that when a particle goes dθ in
poloidal angle, the toroidal distance traveled dsζ ≈ qR0dθ. Dividing by dt, we
get

vζ ≈ qR0θ̇

But for q � 1, vζ ∼ v‖. Solving for θ̇,

θ̇ =
v‖

qR0

so

τB = 2qR0

∫ θ0

−θ0

dθ

v‖(θ)
(3.18)

Using conservation of magnetic moment and conservation of energy, we can solve
for v‖(θ) for trapped particles.

mv‖(θ)
2

2
+ µB(θ) = E

Solving for v‖(θ), we get

v‖(θ) =
( 2

m

)1/2(
E − µB(θ)

)1/2

Using B(r, θ) = B0

h ≈ B0(1− ε cos θ) and λ = µB0

E , this becomes

v‖(θ) =
(2E

m

)1/2(
1− λ

h

)1/2

33Remember that this is the connection length.
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v‖(θ) ≈
(2E

m

)1/2(
1− λ(1− ε cos θ)

)1/2

(3.19)

So (using equation 3.18)

τB = 2qR0

√
m

2E

∫ θ0

−θ0

(
1− λ(1− ε cos θ)

)−1/2

dθ (3.20)

I don’t know how to solve this last integral exactly. If you’re interested in how we
do this, Bill does it in his notes. Instead, let’s try to estimate the integral, using
what we already know. We know that λ is a constant between 1−ε and 1+ε for
trapped particles, so when we plug in λ into the expression (1− λ(1− ε cos θ)),
the factors of 1 will cancel and we’ll be left with ε times some function of angle
f(θ), plus terms to second order in ε which we’ll ignore. We don’t know what

f(θ) is, but for simplicity we’ll just say
∫ θ0
−θ0 1/

√
f(θ)dθ = O(1) ∼ 1. Writing

all this out explicitly gives us∫ θ0

−θ0

(
1− λ(1− ε cos θ)

)−1/2

dθ ∼
∫ θ0

−θ0
1/
√
εf(θ)dθ ∼ ε−1/2O(1) ∼ ε−1/2

With this simplification, we find

τB ∼
qR0

√
2m

(Eε)
1
2

∼ qR0

VTσε
1
2

(3.21)

ωB ∼
VTσε

1
2

qR0
(3.22)

This is our bounce frequency. Note that as we’d expect, electrons have a much
higher bounce frequency than ions due to their higher thermal velocity. We also
have that the bounce frequency goes like ε1/2, just like the fraction of trapped
particles.

3.1.5 Banana Excursion Width

The banana excursion width ξBσ is the radial excursion of a trapped particle
during it’s banana orbit. Take a look back at figure 10 to see what this looks
like physically. We’ll estimate the banana excursion width in two separate ways.
The first is extremely simple: the radial drift velocity times the bounce period
gives approximately the banana excursion width.34 The second method will
involve using the toroidal symmetry to apply conservation of canonical angular
momentum pζ to solve for the excursion width.

34If you remember how we calculated the radial excursion distance ξmax in the collisional
regime back in chapter 2, we applied a very similar method. In chapter 2, however, we didn’t
multiply by the bounce period but rather multiply by a quarter of the connection length
divided by the thermal velocity. I’ve used the same symbol ξ to remind us that these two
quantities have similar physical origins.
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The radial drift velocity in tokamaks due to the curvature and grad-B drifts,
as we showed in section 2.3, point either upwards or downwards depending on
the sign of the particle. As we showed, the radial drifts have magnitude

|vDr| ∼
mV 2

Tσ

eBR0

Therefore, an approximate estimate of the banana excursion ξBσ is

ξBσ ∼ vDrτB ∼
mV 2

Tσ

eBR0

qR0

VTσε
1
2

∼ mVTσq

eBε
1
2

∼ ρσq

ε
1
2

(3.23)

Since q � 1 and ε � 1, the banana excursion width is much larger than the
gyroradius ρσ. Next let’s calculate the banana excursion width a second way,
using conservation of angular momentum. For systems which are symmetric in
ζ, we have conservation of pζ for electrons,

pζ = meRvζ − eRAζ = const

Here is the key: using B = ~∇× ~A and ∂
∂ζ → 0, we know that Bθ = −∂Aζ∂r . So

(Question: but doesn’t this ignore a factor of h? where does h show up in the
curl?)

Aζ = −
∫ r

0

Bθ(r
′)dr′

Suppose the mean radius (center) of the banana orbit is r0.35 We can then
expand Aζ to first order in a Taylor series around r = r0.

Aζ = −
∫ r0

0

Bθ(r
′)dr′ − (r − r0)Bθ(r0)

Now, at the turning point (θ = θ0), we have that v‖ ≈ vζ = 0, and r− r0 = 0.36

Thus, at θ = θ0,

pζ = eR

∫ r0

0

Bθ(r
′)dr′ (3.24)

At θ = 0, we have r − r0 = ξBe. So at θ = 0,

pζ = eR

∫ r0

0

Bθ(r
′)dr′ +mRvζ + eRξBeBθ(r0) (3.25)

From constancy of pζ , we can set equations 3.24 and 3.25 equal, giving

eRξBeBθ(r0) = −mRvζ
35r0 would be the radius of the black circle in figure 10.
36This highlights a subtle difference in our treatment of the passing particles and the trapped

particles. For the passing particles, we set the center of their orbits to be at θ = 0, while for
trapped particles we’re setting the center of their orbit at θ = θ0 or −θ0.
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Using equation 2.6 to show that

Bθ ≈ Bp ≈
BT ε

q
≈ Bε

q

we see that the banana excursion width at θ = 0, which is the maximum banana
excursion width, is

ξBe = −mvζ
eBθ

≈ −mvζq
eBε

Now, naively we would think to plug in vζ ∼ v‖ ∼ VT . However, this is wrong.
Can you see why? The reason is because vζ is evaluated at θ = 0 for the
trapped particles. The untrapped particles have v‖ ∼ VT . However, the trapped
particles have most of their energy in the perpendicular motion, and very little
in the parallel motion. Using the trapping condition( v‖

v⊥

)
Bmin

≤
√

2ε

we have that vζ ∼ v‖ ∼ v⊥
√
ε ∼ VTe

√
ε. Thus, our banana excursion width can

be written as
ξBe = −mvζq

eBε
= −ρeq

ε
1
2

(3.26)

This is the same37 as what we estimated for the banana excursion width using
simply ξBσ ∼ vDrτB .

3.1.6 Banana Diffusion Coefficient

We have all the tools in place to estimate the banana diffusion coefficient. We
know the approximate random-walk step size ∆x for trapped particles - the
banana excursion width, ξBe.

38 We know the approximate time for a particle to
become untrapped: ∆t ∼ ν−1

eff . Naively, this would give us a banana diffusion

coefficient ξ2
Beνeff . However, this is wrong. The reason this is wrong is that

only a fraction of the total number of partices are actually in banana orbits.
This fraction, which we calculated in section 3.1.2, is of order ε

1
2 . To get the

modified diffusion coefficient, we simply multiply the diffusion coefficient of
trapped particles by the fraction of particles which are trapped.39 Therefore,
our banana diffusion coefficient is

DBan ∼ 〈fT 〉
(∆x)2

(∆t)
∼ ε 1

2
ρ2
eq

2

ε

νei
ε

(3.27)

37Except for an unimportant minus sign, which we got because we assumed vζ was positive.
38Make sure you understand physically why this is true. The banana particles, when scat-

tered, change their radial position relative to their most recent scattering by roughly their
radial excursion. The amount the particles change their radial position per ‘step’ is the radial
step-size.

39If you want to see why this is true, look at equation 1.1. If there is a density gradient
in n, but only a fraction of the particles which make up that n experience diffusion, then the
flux will be smaller by this fraction. Therefore the effective diffusion coefficient must also be
smaller by the fraction of particles which actually diffuse.
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DBan ∼ ρ2
eνei

q2

ε
3
2

(3.28)

This banana diffusion coefficient is larger than the collisional (fluid) neoclassical
diffusion coefficient we calculated back in chapter 2. In fact, it’s larger by a
factor of ε−3/2, which is much larger than 1. Since the collisional neoclassical
diffusion coefficient is already much larger than the classical diffusion coefficient,
we can see that collisionless neoclassical diffusion is indeed quite large.

Why is the collisionless neoclassical diffusion coefficient so much larger than
the collisional neoclassical diffusion coefficient? Essentially, it’s because the
collisional model doesn’t account for the trapped particles. These trapped par-
ticles, while a small fraction of the particles, account for a large fraction of
the diffusion. Why do they diffuse so quickly? It comes down to (a) the fact
that their parallel velocity is small, so their radial excursion is much larger, and
(b) they only need to scatter a small amount in velocity space to no longer be
trapped particles, meaning their effective collision frequency is much larger.

3.1.7 Neoclassical Diffusion Regimes

Let’s recap. The trapped particles are those particles which don’t have enough
v‖ to circulate around the tokamak due to µ-conservation and the magnetic field
going as ∼ 1/h. These particles are those particles which, at Bmin, have( v2

‖

v2
⊥

)
Bmin≤2ε

The flux-surface averaged fraction of trapped particles is

fT =
4
√

2

π2

√
ε

Since the trapped particles only need to scatter a small angle in velocity space
to become untrapped, the effective collision frequency for trapped particles is
higher than the normal collision frequency.

νeff,e ∼ νei/ε

The bounce frequency of trapped particles is, integrating v‖ from one turning
point to another,

ωB ∼
VTσε

1/2

qR0

The banana excursion width is

ξBσ =
ρσq

ε1/2

Using the banana excursion width as ∆x and the inverse effective collision fre-
quency as ∆t, the banana diffusion coefficient is

DBan ∼ ρ2
eνei

q2

ε3/2
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The physical origin of collisional neoclassical diffusion is similar, but because
the trapped particles collide before they can execute a banana orbit, then we’re
interested in the radial excursions of passing particles. The passing particles
have a radial drift velocity of order

vDr ≈
mσV

2
Tσ

qBR0

The connection length is the distance traveled by a field line before it ends up
at the same θ it began with.

Lconnection ≈ 2πR0q ∼ R0q

The connection time is the time it takes for a typical particle to make a complete
poloidal orbit as it follows a field line.

τconnection ∼ Lconnection/VTσ ∼ R0q/VTσ

The radial excursion for passing particles is

ξmax ∼
mVTσq

2eB

Using the radial excursion as the random-walk step size ∆x, and the inverse
collision frequency as the time between random-walk steps ∆t, we get the col-
lisional neoclassical diffusion coefficient DNeo

DNeo ∼ νeiρ2
eq

2 ∼ DClassq
2

Great, we’ve summarized many of the important results from collisional and
collisionless neoclassical transport theory.

What we’d like to do now is understand how the collision frequency, relative
to the bounce frequency, can be used to tell us which of the neoclassical transport
regimes we are in. As we’ll see, there are actually three (not two!) collisional
regimes. The least-collisional regime is where the trapped particles are able to
execute bounce orbits without colliding. This is called the banana regime. As
the collision frequency increases, eventually the trapped particles are no longer
able to execute bounce orbits without colliding, but the untrapped particles are
still able to make full poloidal orbits without colliding. This is called the Plateau
regime, for reasons we will soon understand. At still higher collisionality, the
untrapped particles are not able to make full poloidal orbits before colliding.
This is called the Pfirsch-Schluter (P-S) regime, or the fluid-like regime. In
evaluating which of these three regimes we’re in, the dimensionless parameter
we want to consider is ν∗e , the ratio of the effective collision frequency for trapped
particles and the bounce frequency of trapped particles.

ν∗e =
νeff,e
ωB

=
νeiqR0

VTeε3/2
(3.29)
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To be in the banana regime, we need ν∗e � 1, so that trapped particles bounce
many times before becoming untrapped.

What about particles in P-S regime? Since the passing particles collide
before making a poloidal orbit, then in this regime

νei

τ−1
connection

∼ νeiR0q

VTe
= ν∗e ε

3/2 � 1

ν∗e � ε−3/2 (3.30)

Remember, since ε� 1, then the normalized collision frequency ν∗e in the fluid-
like (P-S) regime is much greater than 1. This tells us that between ν∗e = 1
and ν∗e = ε−3/2, we have the plateau regime. Remember, in the plateau regime,
trapped particles become untrapped before they make a complete banana orbit,
but passing particles are able to make a full orbit in θ before they collide.

Let’s look at the diffusion coefficients as a function of ν∗e .40 In the collisionless
banana regime, we have

DBan ∼ ρ2
eνei

q2

ε3/2

and

νei =
ν∗eVTeε

3/2

qR0

which gives us

DBan ∼ ρ2
eVTe

q

R0
ν∗e (3.31)

Similarly, in the highly collisional P-S regime, we have

DNeo ∼ νeiρ2
eq

2

which gives us

DNeo ∼ ρ2
eVTe

q

R0
ν∗e ε

3/2 (3.32)

Now check this out. At the transition from the collisionless regime to the plateau
regime, we have ν∗e = 1, which (from equation 3.31) gives D = ρ2

eVTe
q
R0

. At

the transition from the plateau regime to the P-S regime, we have ν∗e = ε−3/2,
which (from equation 3.32) gives us D = ρ2

eVTe
q
R0

. The conclusion is obvious:
the neoclassical diffusion coefficient is the same at the low-collisionality end of
the plateau regime as it is at the high-collisionality end of the plateau regime.
This tells us that the diffusion coefficient DPlateau is constant throughout the
plateau regime.

DPlateau = ρ2
eVTe

q

R0
(3.33)

40I need to make an important comment here: we’ve calculated D in a highly collisional
regime, and in the collisionless regime. We haven’t calculated D in the intermediate ‘plateau
regime’, where the banana particles don’t make complete orbits but the passing particles do.
We’re going to estimate D in the plateau regime now.
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Figure 11: A plot of the diffusion coefficient as a function of the bounce-
normalized collision frequency ν∗e . We’ve previously calculated the diffusion
coefficient for the banana and P-S regimes. We see that the diffusion coefficient
is the same at the beginning and end of the plateau regime, which motivates us
to believe that the diffusion coefficient doesn’t change as a function of ν∗e in the
plateau regime.

Equations 3.31, 3.32, and 3.33 are plotted as a function of ν∗e in figure 11. Make
sure you understand what this plot is telling us. The diffusion coefficient is
largest in the high-collisionality regime, stays constant throughout the plateau
regime, and is lowest in the low-collisionality regime. Despite this fact, since
D ∝ νei, then the collisionless diffusion coefficient is larger for a given νei.

41

3.2 Electric Field and Trapped Particles

Before we look at the Ware pinch, let’s look at what we’ve done so far in a
slightly different way.

Todo: explain what ware pinch is

3.2.1 Heuristic Estimate of Ware Pinch

A parallel electric field in the collisionless regime leads to a very different effect,
called the Ware pinch. Todo: explain Ware pinch

Let’s estimate the average radial velocity of a trapped electron in a tokamak.
We start with the flux function ψ for a toroidal geometry. We define

ψ ≡
∫
RBθdr (3.34)

Note also that

ψ =

∫
R0h

BP
h
dr =

∫
R0BP dr (3.35)

The flux function ψ has the intepretation of the poloidal flux (or more pre-
cisely, θ-flux) enclosed within a constant-r surface. It tells us how much our

41Question: on page 38, it says plateau regime is very... what?
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poloidal field changes as a function of r, since

∂ψ

∂r
= RBθ = R0BP (3.36)

We have another fact about ψ to keep in mind: Since ~B = ~∇× ~A and ∂
∂ζ → 0

in a toroidal geometry, we have Bθ = − ∂
∂rAζ . This means that we have another

useful form for ψ,
ψ = −RAζ (3.37)

Note that ∂ψ
∂θ = 0, since (using equation 3.35)

∂ψ

∂θ
=

∫
∂

∂θ
R0BP (r)dr = 0

This means that ψ is constant on a flux surface of constant-r. 42 Since any
electric field in a tokamak is being driven by electromagnetic induction, then

we have ~∇× ~E = −∂ ~Bdt . The θ-component of this is

− ∂

∂r
Eζ = − ∂

∂t
Bθ

This is where the fact that we are estimating the average radial drift velocity
becomes important. Question: Do I have this right? For small ε, R ≈ R0. This
means that Bθ = 1

R
∂ψ
∂r ≈

∂
∂r

ψ
R0

. We can therefore remove the derivative with
respect to r in the above equation, and write

∂ψ

∂t
= EζR0 ≈ EζR (3.38)

We’ve got some nice facts about this flux function ψ. Let’s start thinking
about the radial velocity of a particle. We can write the radial velocity of a
particle in a funny way, which will help us later on.

vr =
~v · ~∇ψ
BθR

(3.39)

Now let’s look at conservation of angular momentum in the toroidal direction
ζ. We have (using equation 3.37)

pζ = mRvζ − eRAζ = Const (3.40)

ψ = −RAζ = Const− m

e
Rvζ (3.41)

dψ

dt
= −mR

e

d

dt
vζ (3.42)

42Notice that constant RAζ is the definition used in GPP1 for a flux-surface in a cylindrically
symmetric geometry. These thing are the same!
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In the last step, notice that the time-derivative is a total derivative, not a
partial derivative. We are taking a total derivative because we are going to be
looking at the convective derivative of a particle as it travels around a banana
orbit. Next, we look at a trapped particle and integrate equation 3.42 over time
between the two turning points of the banana orbit. This gives us

−mR
e

∫
dvζ
dt
dt =

∫
dt[
∂ψ

∂t
+ ~v · ~∇ψ]dt

0 =

∫
ds

v‖
[
∂ψ

∂t
+ ~v · ~∇ψ]dt

Where we’ve used the fact that v‖ ∝ vζ = 0 at the turning points to set the
LHS equal to zero. ds is the infinitesimal displacement along the field line. We
can rewrite this as

∂ψ

∂t
= −~v · ~∇ψ (3.43)

where the bar stands for averaging in time over a banana orbit. Hey wait,
the term on the RHS looks like our funny expression for the radial velocity in
equation 3.39! Let’s plug that in and see what happens.

∂ψ

∂t
= vrRBθ

From equation 3.42, we have

vr ≈
Eζ
Bθ

(3.44)

Todo: explain why this isn’t just the E times B velocity. Explain why this
is actually inwards due to my sign convention

Todo: conclusion

3.3 Kinetic Analysis

We’re deriving the Lorentz conductivity of a plasma. This was done in GPP1,
we’re doing this a different way.

We start with the steady-state drift-kinetic equation for electrons

(v‖b̂+ ~vD) · ~∇f +
e

m
E‖v‖

∂

∂E
f = C(f) (3.45)

Question: why not -e?
How did we get this? Well we started with the Vlasov-Maxwell equation for

electrons, and assumed steady-state so ∂
∂t → 0. The only perpendicular velocity

of the particles, if they are drifting, is vD (question: why?). The q
m ( ~E+~v× ~B)·~∇v

term in the Vlasov-Maxwell equation has been modified by ignoring ~B and using
E = 1

2mv
2 to get

∂

∂~v
=
∂E
∂~v

∂

∂E
= (mv‖b̂+m~v⊥)

∂

∂E
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q

m
~E · ~∇vf = qE‖v‖

∂

∂E
f

The collision operator is the Lorentz Collision operator, which gives 0 when
operating on a Maxwellian distribution. The crucial step is to linearize around
a zero-field, equilibrium distribution and assume the electric field creates a per-
turbed f which is small relative to the equilibrium Maxwellian distribution.
This will be true if (?). This means that f = f0 + f1 + ... where f0 = fM ,
and C(f0) = 0. We linearize the drift-kinetic equation around this equilibrium,
where vD and E‖ are both first-order quantities.

v‖b̂ · ~∇f1 − C(f1) = −~vD · ~∇f0 − ev‖E‖
∂

∂E
f0

Since

fM = n
( m

2πkBT

)3/2

exp
(
− mv2

2kBT

)
(3.46)

then
∂

∂E
fM = − fM

kBT
(3.47)

this becomes

v‖b̂ · ~∇f1 − C(f1) = −~vD · ~∇f0 −
e

kBT
v‖E‖f0 (3.48)

Now, we are looking for the contribution to the current due to the trapped-
particle population or something like that. To isolate for this, we can separate
out the contribution from the classical Spitzer conductivity from that of the
bootstrap component. Thus, we define the Spitzer conductivity contribution to
the first-order perturbation to f , fS , as the solution to the equation

C(fS) =
e

kBT
v‖E‖fM

Let’s now try to solve for the contribution from the bootstrap current in a
toroidal geometry, by setting f1 = fS + f̂ .

v‖b̂ · ~∇f̂ + v‖b̂ · ~∇fS − C(f̂)− C(fS) = −~vD · ~∇f0 −
e

kBT
v‖E‖f0

If we assume that the quantities n and T in the Maxwellian fM only vary
with poloidal radius r, then ~∇fM = ∂fM

∂r , so (using equation 3.46)

~∇f0 =
fM
n(r)

∂n

∂r
− 3fM
nT (r)

∂T

∂r
+ fM

mv2

2kBT 2

∂T

∂r

~∇f0 = [
∂(lnn0)

∂r
+ (

v2

V 2
T

− 3

2
)
∂ lnT

∂r
]fM (3.49)
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where V 2
T = 2kBT

m . Now we subtract equation 3.47 out of equation 3.48 and
use equation 3.49.

v‖b̂ · ~∇f̂ − C(f̂) = −(vD)r

[∂(lnn)

∂r
+ (

v2

V 2
T

− 3

2
)
∂(lnT )

∂r

]
fM − v‖b̂ · ~∇fS (3.50)

Let’s try to solve this equation for the toroidal geometry we’ve been consid-
ering throughout these notes so far.

3.3.1 Spitzer Conductivity

C(fS) =
e

kBT
v‖E‖fM (3.51)

We have the Coulomb collision operator.

Ccoul(fe, fi) = −νei
2
v3
Te

∂

∂wα

[(
δαβ
|w|
− wαwβ
|w|3

)
∂fe
∂wβ

]
(3.52)

where ~w = ~ve − ~ui. Let’s try to get this into the form for trapped particles.
(Question: how?) This form is

C(f) = 2νei(v)h
∂

∂λ
[λξ

∂

∂λ
f ] (3.53)

where ξ =
v‖
v =

√
1− λ

h where λ = µB0

E . As usual, h = 1 + ε cos θ where

ε = r
R0

. Defining gS to be fS = fMgS , we have (using equation 3.51)

C(fS) = 2νei(v)hξ
∂

∂λ
[λξ

∂

∂λ
fMgs] =

e

kBT
v‖E‖fM

Since C(fM ) = 0, we can pull this out of both sides. We can also estimate the
magnitude of the operators by assuming that gS ∝ ξ.43 For trapped particles,
h ≈ 1, ξ ≈ ε1/2, λ ≈ 1, ∆λ ≈ ε1/2. This makes

h
∂

∂λ
[λξ

∂

∂λ
ξ] ≈ hλξ2

∆λ2
≈ 1

Actually, a more careful analysis suggests this is 1
2 rather than 1. (why?)

With this substitution, we get

νeifMgS =
e

kBT
v‖E‖fM

gS =
e

kBTνei
v‖E‖ (3.54)

fS = gSfM =
e

kBTνei
v‖E‖fM (3.55)

43The reason we make this assumption is justified in my GPP1 notes in the section on
Lorentz conductivity. I don’t want to explain it again.
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The component of the current current driven by classical (Spitzer) resistivity
is

J‖S = −e
∫
v‖fSd

3~v = −e
∫
v‖fMgSd

3~v

J‖S = −
e2E‖

kBT

∫ v2
‖

νei
fM (3.56)

To solve this integral, we use νei(v) = νei
V 3
Te

v3 , v‖ = ξv, d3~v = 2πξdλv2dv
(why?). Eventually this becomes

J‖S = σ‖E‖ (3.57)

σ‖ =
32

3π

n0e
2

meνei
(3.58)

3.3.2 Back to calculating something

That was all calculating spitzer contribution to conductivity, based on fS . But
fe = f0 +fS+ f̂e/, and we need to calculate the contribution of f̂ to the current,
as given by

J‖ = −e
∫
v‖fed

3~v = σ‖E‖ − e
∫
v‖f̂ed

3~v (3.59)

This first term is of course the spitzer conductivity we just calculated, this
second term is the neoclassical ”bootstrap” current.

We also had the neoclassical electron flux, given by the first term in equation
2.40.

ΓNeo ≈
1

eBP
〈R‖ei − neE‖〉 (3.60)

We’re going to calculate this term as well. Remember, ~Rei =
∫
m~vCei(fe, fi)d

3~v.
This means that

Cei(fe, fi) = Cei(f̂ , fi) + Cei(fS , fi) = Cei(f̂ , fi) +
e

kBT
v‖E‖fM

and, using V 2
T = 2kBT

m and
∫∞
−∞ x2e−x

2

dx =
√
π/2,

meE‖

kBT

∫
v2
‖fMd

3~v =
meE‖

kBT
n
v2
T

2
= enE‖

R‖ei =

∫
mv‖Cei(f̂ , fi)d

3~v +
meE‖

kBT

∫
v2
‖fMd

3~v =

∫
mv‖Cei(f̂ , fi)d

3~v + enE‖

With these results, the neoclassical flux ΓNeo simplifies.

ΓNeo =
1

eBP
〈
∫
mv‖Cei(f̂ , fi)d

3~v + enE‖ − neE‖〉 =
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1

eBP
〈
∫
mv‖Cei(f̂ , fi)d

3~v〉 (3.61)

This implies that we can calculate the neoclassical particle flux if we can just
calculate f̂ . Look back at equation 3.59: we can calculate the parallel current
as well if we can calculate f̂ . The conclusion is that both quantities can be
calculated if we just have f̂ . Let’s set to calculate f̂ .

3.3.3 Calculating f̂

Let’s introduce the mathematically convenient form of the radial component of
the radial drift velocity in a tokamak,

(vD)r =
mv‖

qBP
b̂ · ~∇(hv‖) (3.62)

How do we get it in this form? We start with our drift-velocity in the absence
of electric fields,

~vD =
mv2
⊥

2qB2
b̂× ~∇B +

mv‖

qB2
~B × (b̂ · ~∇)b̂ (3.63)

In a low-β (i.e. a zero- ~J⊥ plasma), this becomes

~vD =
m(v2

⊥/2 + v2
‖)

qB2
b̂× ~∇B (3.64)

We prove this as follows: in a low-β plasma, we have the MHD equilibrium
equation ~∇P = ~J × ~B where ~J = 1

µ0

~∇ × ~B. If the magnetic pressure is much

higher than the plasma pressure, then ~∇P must be small which implies ~J⊥
must also be small. If J⊥ = 0, then (~∇ × ~B)⊥ = 0. We can use this to prove
~B × (b̂ · ~∇)b̂ = b̂× ~∇B. We use a clever trick from Goldston’s book.

0 = b̂× (~∇× ~B)⊥ = b̂× (~∇× ~B)

0 = εijkbj(εklm∂lBm)

εkijεklmbj∂lBm = (δilδjm − δimδjl)bj∂lBm = 0

bj∂iBj = bj∂jBi = b̂ · (~∇ ~B) = (b̂ · ~∇) ~B

b̂× (b̂ · (~∇ ~B)) = b̂× (b̂ · ~∇) ~B

Now suppose at some point we choose our z-axis to be in the direction of
the magnetic field. Then

b̂ · (~∇ ~B) = ẑ · (∂Bz
∂x

x̂ẑ +
∂Bz
∂y

ŷẑ +
∂Bz
∂z

ẑẑ) = ~∇Bz = ~∇B

and

b̂× (b̂ · ~∇) ~B = b̂× (
∂

∂z
(Bz b̂)) = b̂× ∂Bz

∂z
b̂+ b̂× (Bz

∂b̂

∂z
) = ~B × ∂b̂

∂z
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b̂× (b̂ · ~∇) ~B = ~B × (b̂ · ~∇)b̂

Putting this together, we have b̂ × ~∇B = ~B × (b̂ × ~∇)b̂. This proves that,
for low-β plasmas, we can write our drift velocity as in equation 3.64.

Todo: how can we write this in terms of temperatures?
Now, using equation 3.64, we can write the drift velocity specifically in a

tokamak. We have |B| = B0

1+ε cos θ ≈ B0(1 − ε cos θ), so that (now using cylin-

drical coordinates instead of toroidal coordinates) ~∇B = −B0

R0
r̂cylindrical points

radially inwards. This is illustrated in figure ??. Since ~B is mostly in the
toroidal direction, b̂× ~∇B = B0

R0
ẑ. The radial component of this is (now revert-

ing back to toroidal coordinates) B0 sin θ
R0

. With this result, the drift velocity in
a tokamak becomes (using equation 3.64)

(vD)r =
m(v2

⊥/2 + v2
‖)

qBR0
sin θ (3.65)

Todo: Figure
Great. Let’s try to get equation 3.62 in this form. For a collisionless particle

in a tokamak,
v‖ =

√
2/m

√
E − µB

so
~∇(hv‖) = v‖~∇h+ h~∇v‖

~∇(hv‖) = v‖
1

R0
r̂cylindrical − h

√
1

2m

1√
E − µB

µ~∇B

~∇(hv‖) = v‖
1

R0
r̂cylindrical − h

1

m

µ~∇B
v‖

Since ~∇B = −B0

R0
r̂cylindrical, then both of the above terms are in the (cylin-

drically) radially outwards direction. Since

~B =
BT
h
ζ̂ − BP

h
θ̂

(where the negative sign comes assuming Jζ is in the positive direction) then
(setting h ≈ 1)

b̂ · ~∇(hv‖) =
BP
B0

sin θ

R0
(v‖ +

2

m
µB0)

mv‖

qBP
b̂ · ~∇(hv‖) =

m sin θ

qB0R0
(v2
‖ +

v2
⊥
2

) (3.66)

Comparing equation 3.66 with equation 3.65, we see that these two expres-
sion are the same. This proves that equation 3.62 gives us our particles drifts
in a tokamak.
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Now let’s try to solve for f̂ . Let’s look back at equation 3.50, reproduced
below.

v‖b̂ · ~∇f̂ − C(f̂) = −(vD)r

[∂(lnn)

∂r
+ (

v2

V 2
T

− 3

2
)
∂(lnT )

∂r

]
fM − v‖b̂ · ~∇fS (3.67)

Let’s remember how we got this equation. We started with the drift-kinetic
equation for electrons in a toroidal geometry, and linearized f around a non-
homogenous Maxwellian distribution function, where the first-order effects are
due to drift velocity and electric fields. We then got an equation for the first-
order distribution function f1, which we separated into two parts: fS , the first-
order change in the distribution function due to the classical Spitzer resistivity
(parallel electric field), and f̂e, the first-order change in the distribution function
due to the toroidal effects. We’re now solving for fe, which we can do now that
we know (vD)r. Plugging in our epression for (vD)r, we have

v‖b̂ · ~∇f̂ −C(f̂) = −
mv‖

qBP
b̂ · ~∇(hv‖)

[∂(lnn)

∂r
+ (

v2

V 2
T

− 3

2
)
∂(lnT )

∂r

]
fM − v‖b̂ · ~∇fS

Fortunately, we’ve already calculated fS , back in equation 3.55, reproduced
below.

fS =
e

kBTνei
v‖E‖fM

Taking the gradient gives

~∇fS =
ev‖E‖

kBTνei

[∂(lnn)

∂r
+ (

v2

V 2
T

− 3

2
)
∂(lnT )

∂r

]
fM +

eE‖

kBTνei
~∇v‖

we can also make the approximation b̂ · ~∇v‖ ≈ b̂ · ~∇(hv‖) (why?). This gives
us

Notice that we’ve got two terms which go like v‖b̂ · ~∇
Notice that we’ve got two terms that a
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4 Anomalous Transport

“For a successful technology, reality must take
precedence over public relations, for nature cannot

be fooled.”

Richard Feynman

What is anomalous transport? Essentially, everything which enhances trans-
port above neoclassical levels. That means waves and turbulence which might
be generated in a toroidal geometry. Neoclassical transport happens even in
steady-state, anomloulous transport requires some time-evolving plasma state
to create that enhanced transport. In this class, we’ll focus on two types of
anomalous transport: drift waves, created by a density gradient in a plasma,
and ion temperature gradient waves (ITG waves), which as their name suggests
are created by temperature gradients in a plasma. The existence of a density
gradient and temperature gradient are things which we expect to arise in a
tokamak geometry, and indeed do.

Why are we studying drift waves and ITG waves? what does that have to
do with anamolous transport?

Todo: make a table summarizing all of the variables, what they mean

4.1 Drift Waves

Let’s start with the slab geometry shown in figure ??. In this geometry, we have
a magnetic field pointing in the z-direction, and a density gradient pointing in
the x-direction. While this is a simple slab geometry, it isn’t too unlike the
geometry we would see in a tokamak. The toroidal direction in a tokamak is
analogous to the z-direction in this slab geometry, as both have the magnetic
field primarily in that direction. While in a tokamak the density gradient is
mostly in the r-direction, here it is in the x-direction. So the x-direction is
analogous to the r-direction in a tokamak. Similarly, the y-direction is analogous
to the poloidal direction in a tokamak. To start to understand this, we’ll look
at the single-particle diamagnetic drift speed,

~v∗σ =
Tσ

qσB0n

dn

dx
ŷ (4.1)

Todo: write about how we got this
As we’ve mentioned, the density gradient sets up a current in our plasma.

Let’s suppose we end up finding some oscillation with wavenumber ky. Then
we can create some frequency out of the diamagnetic drift velocity and ky.

ω∗σ = kyv∗σ =
kykBTσ
qσB0

d(lnn)

dx
(4.2)

Todo: figure
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Todo: explain how diamagnetic current balances pressure gradient force so
MHD equilibrium is stable

Now, we’ll need to make some approximations to get a tractable answer
here. Firstly, we need to assume that the Gyro radius ρσ = kBTσ

qσB0
is small

relative to the length scale of the density changes, L = − 1
n
dn
dx . We also as-

sume that the frequency of the oscillation is small relative to the gyrofrequency,
Ω = qσB

mσ
. Actually, since the ion gyrofrequency is so much smaller than the

electron gyrofrequency and the ion gyroradius is so much larger than the elec-
tron gyroradius, we need to worry about the ion quantities and not really the
electron quantities. This can be written

ρi/L� 1

ω/Ωi � 1

We also have that the diamagnetic drift velocity is much smaller than that
species thermal velocity, by a factor ρσ/L.

v∗σ = ρσ
VTσ
L

We also have that

ω

Ω
∼ ω∗

Ω
∼ kyρVT

ΩL
∼ kyVT

ρ

L
� 1

Why do we care?
Since parallel to the magnetic field, the longest wavelength a wave can have

is Lc, the connection length, then we expect k‖ ≥ 1
Lc

. Drift waves operate in a
parameter regime where

VTi <
ω

k‖
< VTe

This means that, like the ion acoustic wave, drift waves operate in the pa-
rameter regime where electrons are isothermal and ions are adiabatic. In some
sense, drift waves are like modified ion acoustic waves, except with a density
gradient and a magnetic field. Now, drift waves are electrostatic in origin,
meaning we’ll solve them just like we solve any other electrostatic wave: using
the momentum equation, continuity equation, and Poisson’s equation. We lin-
earize these equations, starting from the equilibrium we have in figure ??. The
equilibrium we treat using MHD for simplicity, which gives us

~∇P = ~J × ~B (4.3)

This tells us that the diamagnetic current balances the pressure gradient set
up by the density gradient.

Now let’s solve for the dispersion relation of drift waves in this geometry.
Remember how we solved for the dispersion relation of the ion acoustic wave
way back in GPP1? What we did was we found the adiabatic and isothermal
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response functions for each species, then plugged these response functions into
Gauss’s law. If you remember, the response function is the first-order density
perturbation nσ1. In GPP1, we found the response functions using a kinetic
approach and using a fluid approach, where we took a different limit of the
solution to the equations depending on which limit we were in. We’ll take that
approach to finding the adiabatic ion response function. However, we take a
different approach to finding the isothermal electron response function. Since
the electrons are isothermal, they are approximately in thermal equilibrium.
This means that they satisfy Boltzmann’s equation

ne = n0 exp [− E

kBTe
] = n0 exp

eφ

kBTe
(4.4)

ne ≈ n0[1 +
eφ1

kBTe
]

ne1 = n0
eφ1

kBTe
(4.5)

Compare equation 4.5 with the isothermal response function we derived back
in GPP1,

nσ1 = − qσφ

mσV 2
Tσ

Setting V 2
Tσ = kBTσ

mσ
, we see that our two response functions are equal!

We’ve actually stumbled upon a pretty cool trick for quickly getting isothermal
response functions: just use Boltzmann’s equation. It’s a lot faster than solving
the fluid or kinetic equations in an isothermal limit. Equation 4.5 gives us our
electron response function. What about the ion response function? To solve for
this, we’re going to have to solve the fluid equations for the ions in this slab
geometry. To solve the fluid equations, we linearize around our non-homogenous
equilibrium, keeping all quantities to first-order. We’ll assume that ~B has no
first-order component, and Ti = 0. (why?) What do our linearized equations
become? We have the linearized continuity equation and linearized momentum
equation Todo: make all these ~u instead of ~v.

∂n1

∂t
+
∂n0

∂x
v1x + n0(~∇ · ~v1) = 0 (4.6)

∂~v1

∂t
=

e

mi
(−~∇φ1 + ~v1 × ~B0) (4.7)

where we’ve ignored the ion pressure term and any first-order change in
~B. Next, we’ll assume an exponential dependence in each of the first-order
quantities. Todo: change all previous n’s to n0. This gives

φ = φ1(x) exp [i(kyy + k‖z − ωt)]

ni = n0(x) + n1 exp [i(kyy + k‖z − ωt)]

~vi = ~vi0 + ~v1 exp [i(kyy + k‖z − ωt)]
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We want to solve the continuity equation to get an equation for the first-
order density, so that we have our ion response function. To do so, we need
equations for v1x and ~∇ · ~v1. We can solve the momentum equation to get
~v1 which allows us to solve the continuity equation. Solving the momentum
equation by components, we have

−iωv1x =
e

mi
(v1yB0)

−iωv1y =
e

mi
(−ikyφ1 − vxB0)

−iωv1z =
e

mi
(−ik‖φ1)

Rearranging for the first-order velocities, we have

v1y = −i ω
Ωi
v1x

v1x = i
ω

Ωi
v1y − i

ky
B0

φ1

v1z =
e

miω
k‖φ1 (4.8)

Looking at the equations for v1x and v1y, we see that we have 2 equations
but two unknowns. We can therefore solve these equations for v1x and v1y.
Plugging the first equation into the second equation, we get

v1x =
ω2

Ω2
i

v1x − i
ky
B0

φ1

so

v1x =
1

1− ω2/Ω2
i

−iky
B0

φ1 (4.9)

which means

v1y =
1

1− ω2/Ω2
i

−ωeky
miΩ2

i

φ1 (4.10)

Remember what we’re trying to do: solve for v1x and ~∇ · ~v so that we can
solve the continuity equation for the ion response function. With equations
4.48, 4.49, and 4.8, we have ~v1. But since we’re looking at drift waves where the
frequency is much less than the ion cyclotron frequency, then we can use the
approximation ω

Ωi
� 1 to write 1

1−ω2/Ω2
i
≈ 1. With this approximation, let’s

solve for ~∇ · ~v1.

~∇ · ~v1 = −iω
[ ek2

y

miΩ2
i

−
ek2
‖

miω2

]
φ1 (4.11)

~∇ · ~v1 = −iω eφ1

kBTe

kBTe
mi

[ k2
y

Ω2
i

−
k2
‖

ω2

]
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~∇ · ~v1 = −iω eφ1

kBTe

[
bs −

k2
‖c

2
s

2ω2

]
(4.12)

where c2s = 2kBTe
mi

, ρs = cs
Ωi

, and bs = 1
2k

2
yρ

2
s. Remember that cs is the

sound speed or acoustic speed in a plasma. ρs is a new variable we haven’t
seen before, which I call the acoustic gyroradius. It represents the gyroradius
a particle would have if it were traveling at the sound speed. bs is a funny
dimensionless variable which represents how short the wavelengths are in the
perpendicular direction. If ky is really small relative to the acoustic gyroradius,
then we have big perpendicular wavelengths and bs is big. Similarly, if ky is
really big, then we have short perpendicular wavelengths and bs is also really
large. With ~∇ · ~v1 in hand, we can plug this into the linearized continuity
equation to solve for the ion response function. Using equation 4.6, we have

−iωn1 − i
∂n0

∂x

eky
miΩi

φ1 − iω
n0eφ1

kBTe

[
bs −

k2
‖c

2
s

2ω2

]
= 0

n1 = − 1

n0

∂n0

∂x

n0ekyφ1

miωΩi
− n0eφ1

kBTe

[
bs −

k2
‖c

2
s

2ω2

]
n1

n0
=

eφ1

kBTe

[ω∗
ω
− bs +

k2
‖c

2
s

2ω2

]
(4.13)

where

ω∗ ≡ −
kykBTe
miΩi

∂(lnn0)

∂x
=
kyTe
miΩi

1

Ln
(4.14)

Todo: make sure the sign convention for Ln gets explained at some point.
This is the ion response function! With both the electron and ion response

functions in hand, we can solve for the dispersion relation for drift waves by
plugging them into Gauss’s law.

−~∇2φ =
1

ε0

∑
qσnσ

−(k2
‖ + k2

y)φ1 =
e2n0φ1

kBTeε0

[
− 1 + bs −

ω∗
ω
−
k2
‖c

2
s

2ω2

]
ε0kBTe
e2n0

(−k2
‖ − k

2
y) =

[
− 1− bs +

ω∗
ω

+
k2
‖c

2
s

2ω2

]
Now, the LHS equals −λ

2
De

λ2 , which is much less than 1 as long as the wave-
length of the oscillation is much longer than the Debye length, as we indeed
expect it to be. We can therefore neglect this LHS term in favor of the 1 (and
other terms) on the RHS. This gives us a new dispersion relation for drift waves.

1 + bs −
ω∗
ω
−
k2
‖c

2
s

2ω2
= 0 (4.15)
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Suppose we take the long perpendicular wavelength, large-B limit which
makes bs � 1. This allows us to solve for ω.

ω2 − ωω∗ −
1

2
k2
‖c

2
s = 0

If we take ω∗ = 0 (which is the limit where there is no density gradient), we
recover the dispersion relation for ion acoustic waves

ω =
k‖cs√

2

If we have a density gradient, then we have

ω =
1

2

[
ω∗ ±

√
ω2
∗ + 2k2

‖c
2
s

]
(4.16)

This gives us two solutions, one which is always positive and one which is
always negative. A plot of the two solutions is shown in figure ??. As we can
see, as the wavelengths decrease (k‖ increases) the drift waves become more
and more like ion acoustic waves. The density gradient has the most significant
impact on the large-λ waves.

Question: what do positive and negative signs mean? right-moving and
left-moving?

Todo: summarize what we just did
Todo: look forward to the future - why we have investigated these waves,

how we will look at kinetic destabilization of these waves.

4.1.1 Kinetic Destabilization of Electron Drift Waves

Let’s think back to GPP1, when we derived the electron and ion response func-
tion in both the adiabatic and isothermal limits two separate ways. The first
time round, we used the Vlasov equation to get an equation for fσ1, which we
integrated to get nσ1. While this integral blew up in the denominator at ω

k = v‖,
we we able to get a result by expanding the denominator in certain limits. The
second time round, we used the fluid equations, and encountered no singularities

as long as ω2

k2 6= γV 2
Tσ. In other words, using the fluid equations didn’t give us

a problem except at a single point, but using kinetic equations our integral had
a singularity which we didn’t know how to resolve.

Question: why is it called electron drift waves and not just drift waves?
As we saw in section 4.1, drift waves are like ion acoustic waves in a plasma

with a magnetic field and a density gradient. We solved for their dispersion
relation using fluid equations, and found no singularities. It turns out that
if we solve for the dispersion relation of a drift wave using a kinetic model,
we get singularities, just like when we solved for the dispersion relation of ion
acoustic waves using a kinetic model. Here, we’ll investigate drift waves using
a kinetic approach for the electrons and see that electron kinetic effects cause
a destabilization of the mode. These kinetic effects can be thought of as wave-
particle resonances which drive the instability.
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We start with the electrostatic drift-kinetic equation for the electrons,

∂f

∂t
+ ~vGC · ~∇f −

e

m
E‖

∂f

∂v‖
= 0 (4.17)

We then linearize the distribution function around a Maxwellian, so that
f = fM + f1. Since we’re solving for the electron response in the slab geometry
so that we can understand wave-particle resonances and their effect on drift
waves, we let the quantities n and T in the Maxwellian depend only on x, which
makes sense since the zeroth-order density is a function of only x. Linearizing
the drift-kinetic equation gives

∂f1

∂t
+ ~v‖b̂ · ~∇f1 + ~vD · ~∇fM −

e

m
E‖

∂fM
∂v‖

= 0 (4.18)

Now, since

fM = n0(x)
( m

2πkBT (x)

)3/2

exp
(
− mv2

2kBTe(x)

)
(4.19)

then

~∇fM = x̂
[ 1
n0
∂n0

∂x
− 3

2Te

∂Te
∂x

+
mv2

2kBT 2
e

∂Te
∂x

]
fM

~∇fM = x̂
[∂ lnn0

∂x
+
∂ lnTe
∂x

( E

kBT
− 3

2

)]
fM

and our magnetic field is straight, so ~vD =
~E× ~B
B2 = −~∇φ1×b̂

B , which implies

~vD · ~∇fM = − 1

B

∂φ1

∂y

[∂ lnn0

∂x
+
∂ lnTe
∂x

( E

kBT
− 3

2

)]
fM (4.20)

We also have that

− e

m
E‖

∂fM
∂v‖

=
e

kBTe
E‖v‖fM

Putting all this together, we have

∂f1

∂t
+v‖b̂ · ~∇f1−

1

B

∂φ1

∂y

[∂ lnn0

∂x
+
∂ lnTe
∂x

( E

kBT
− 3

2

)]
fM −

e

kBTe

∂φ1

∂z
v‖fM = 0

(4.21)
Now, we can solve this equation for f1, by assuming that the perturbed

quantities go as ei(k‖z+kyy−ωt). This gives

(−iω + iv‖k‖)f1 = iky
φ1

B

[∂ lnn0

∂x
+
∂ lnTe
∂x

( E

kBTe
− 3

2

)]
fM + iv‖k‖

eφ1

kBTe
fM
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Cancelling the i’s, we get

(ω − k‖v‖)f1 = − eφ1

kBTe
fM

[
k‖v‖ +

kykBTe
eB

∂ lnn0

∂x

[
1 +

∂ lnTe
∂ lnn0

( E

kBTe
− 3

2

)]]

We’ll use some definitions to make this easier. We set

ω∗ ≡ −
kykBTe
eB

∂(lnn0)

∂x
=
kykBTe
eB

1

Ln

ηe ≡
∂ lnTe
∂ lnn0

ωT∗ ≡ ω∗
[
1 + ηe

( E

kBTe
− 3

2

)]
This gives us a nice expression for f1.

f1 =
eφ1

kBTe
fM [

ωT∗ − k‖v‖
ω − k‖v‖

]

We can rewrite this in a more convenient form by adding and subtracting 1.

f1 =
eφ1

kBTe
fM [

ωT∗ − k‖v‖
ω − k‖v‖

−
ω − k‖v‖
ω − k‖v‖

+ 1]

f1 =
eφ1

kBTe
fM −

eφ1

kBTe

[ ω − ωT∗
ω − k‖v‖

]
fM (4.22)

To get the electron response function n1, we need to integrate f1 over veloc-
ities.

n1 =
eφ1

kBTe

[∫
fMd

3~v −
∫ ( ω − ωT∗

ω − k‖v‖

)
fMd

3~v

]
(4.23)

The first term integrates to n0(x), which gives us the isothermal response
function we derived for the electrons in section 4.1. The second term is where
the fun happens, meaning where the kinetic effects come into play. To make
things more complicared, ωT∗ has a hidden factor of E in it, which means we’ll
have to really careful with the integration. Let’s write it out carefully.∫ ( ω − ωT∗

ω − k‖v‖

)
fMd

3~v = n0

∫ ( 1− ωT∗
ω

1− k‖v‖
ω

)( m

2πkBTe(x)

)3/2

exp
(
− mv2

2kBTe(x)

)
d3~v

When ω = k‖v‖, this goes to infinity. So we should be able to integrate over
v⊥ without any problems. We’ve gotta be careful about the hidden factor of E,
but in principle this can be done. Let’s get to work on this second term.

= n0

∫ ( 1

1− k‖v‖
ω

)( m

2πkBTe

)1/2

exp
( −mv2

‖

2kBTe(x)

)
dv‖
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∫ ∫ (
1−ω∗

ω

[
1+η

(v2
‖ + v2

⊥1 + v2
⊥2

2kBTe/me
−3

2

)])( m

2πkBTe

)
exp

(−m(v2
⊥1 + v2

⊥2)

2kBTe(x)

)
dv⊥1dv⊥2

This seems terrible - and it isn’t a pretty expression by any means. But if
we make it dimensionless, we see that the factor with η completely cancels when
we do the Gaussian integrals. Setting V 2

Te = 2kBTe
me

, and x =
v‖
VTe

, y = v⊥1

VTe
, and

z = v⊥2

VTe
, then dv‖ = dx

√
kBTe
me

, etc. We can greatly simplify our integral then.

= n0(x)

∫ ( 1

1− k‖v‖
ω

) 1√
π

exp (−x2)dx

∫ ∫ (
1− ω∗

ω

[
1 + η

(
x2 + y2 + z2 − 3

2

)] 1

π
exp (−y2 − z2)dydz

)
Let’s do the integral with respect to z first. Since

∫∞
−∞ e−x

2

dx =
√
π and∫∞

−∞ x2e−x
2

dx =
√
π

2 , then every term brings out a factor of
√
π in front, except

the term with z2 which gets cut in half relative to the other terms. We are left
with

= n0

∫ ( 1

1− k‖v‖
ω

) 1√
π

exp (−x2)dx

∫ (
1− ω∗

ω

[
1 + η

(
x2 + y2 +

1

2
− 3

2

)] 1√
π

exp (−y2)dy
)

Essentially the same thing happens with the y-integral, giving us

= n0

∫ (1− ω∗
ω [1 + η(x2 − 1

2 )]

1− k‖v‖
ω

) 1√
π

exp (−x2)dx

Actually, this integral isn’t in the form we want it in yet, since x = v‖/VTe,
yet we have a v‖ in the bottom. We fix this by multiplying the numerator and
denominator by 1/VTe and pulling out a k‖/ω from the bottom. This makes
the second term we’ve been working on

= n0
ω

k‖VTe

∫ (1− ω∗
ω [1 + η(x2 − 1

2 )]
ω

k‖VTe
− x

) 1√
π

exp (−x2)dx

We’re going to make an additional variable substitution, such that ζe ≡
ω

k‖VTe
. We do this because we’re going to introduce the plasma dispersion

function, Z(ζ). The plasma dispersion function Z(ζ) is defined as

Z(ζ) ≡ 1

π1/2

∫ ∞
−∞

exp (−x2)

x− ζ
dx (4.24)

As you can see, our second term is looking awfully like the plasma dispersion
function, except one of the terms has an x2 up top.

= −n0ζe

∫ (1− ω∗
ω [1 + η(x2 − 1

2 )]

x− ζe

) 1√
π

exp (−x2)dx
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We are going to treat the x2 term (how? why?). With this approximation,
the integral over x2 cancels the 1

2 , meaning we drop the η term and are left with∫ ( ω − ωT∗
ω − k‖v‖

)
fMd

3~v = −n0(1− ω∗
ω

)ζeZ(ζe) (4.25)

Remember, this is the second term in the electron response function. With
this term solved for, we have the kinetic electron response function for the slab
geometry in figure ??. From equation 4.23, this is

n1 =
eφ1n0

kBTe

[
1 + (1− ω∗

ω
)ζeZ(ζe)

]
(4.26)

Todo: summarize what we’ve done so far in detail

4.1.2 Plasma Dispersion Function

Before we go any further, we’re going to need to know some things about the
plasma dispersion function Z(ζe). As we defined above, the plasma dispersion
function is defined as

Z(ζ) ≡ 1

π1/2

∫ ∞
−∞

exp (−x2)

x− ζ
dx (4.27)

Of course, this integral has a singularity at x = ζe, which means we can’t
solve it unless we use complex analysis to evaluate it. We actually won’t worry
about solving it in the general case in these notes. Instead, we’ll solve it in the
ζe � 1 limit.44 In this limit, our function becomes

Z(ζ) = iπ1/2 exp (−ζ2)− 2ζ +
4

3
ζ2 − ... (4.28)

We can actually show this, using a wickedly clever trick. Since (for Im(ζ) >
0, so that the integral converges)

i

∫ ∞
0

exp [−i(x− ζ)τ ]dτ = i
[− exp [−i(x− ζ)τ ]

i(x− ζ)

]∞
0

=
1

x− ζ

then we can write Z(ζ) as

Z(ζ) =
i

π1/2

∫ ∞
−∞

exp (−x2)dx

∫ ∞
0

exp [−i(x− ζ)τ ]dτ (4.29)

We can move terms around and complete the square to get it in the form we
want.

Z(ζ) =
i

π1/2

∫ ∞
0

exp (iζτ)dτ

∫ ∞
−∞

exp (−x2 − ixτ)dx

44Recognize that since ζe ≡ ω
k‖VTe

, it makes sense we would want to evaluate Z(ζe) in

the small-ζe limit. The reason for this is that drift waves, like ion acoustic waves, are in the
regime VTi � ω

k‖
� VTe, since the electrons are isothermal but the ions are adiabatic.
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Z(ζ) =
i

π1/2

∫ ∞
0

exp (iζτ − τ2

4
)dτ

∫ ∞
−∞

exp
(
− x2 − ixτ +

τ2

4

)
dx

Z(ζ) =
i

π1/2

∫ ∞
0

exp (iζτ − τ2

4
)dτ

∫ ∞
−∞

exp
(
−
(
x+

iτ

2

)2)
dx

This second integral, through a simple change of variables, becomes∫ y=∞+ iτ
2

y=−∞+ iτ
2

exp (−y2)dy =
√
π

The fact that the integral is the same as if there wasn’t complex integers
in the numerator has to do with the fact that the integral encloses no poles,
and any closed integrals in the complex plane integrate to zero. Armed with
those two pieces of knowledge, we can deform the integral along the real axis
and convince ourselves it gives the same result as along the real axis but with a
larger imaginary component. Having solved this integral, we have that

Z(ζ) = i

∫ ∞
0

exp (iζτ − τ2

4
)dτ (4.30)

This is an alternative way of writing the plasma dispersion function, which
will prove helpful to us as we continue in our studies of plasma physics. For
now, though, let’s just expand this integral in the small-ζ limit and see what
we get.

Z(ζ) = i

∫ ∞
0

e−τ
2/4
[
1 + iζτ − ζ2τ2

2
− i ζ

3τ3

3!
+
ζ4τ4

4!
+ ...

]
dτ

Z(ζ) = i
√
π(1− ζ2 + ...)− 2ζ

[
1− 2ζ2

3
+ ...]

]
The first of these infinite summations ends up summing into something nice,

e−ζ
2

. The second term, as far as I know, doesn’t give us anything nice. But
what we’re interested in (at least for the destabilization of drift waves) is the
imaginary component of Z(ζ), since that gives us an exponentially growing or
decaying component. So our imaginary component of Z(ζ) in the small-ζ limit
is

ZIm(ζ) = i
√
πe−ζ

2

≈ i
√
π (4.31)

4.1.3 Returning to Drift Waves

We have what we need out of the plasma dispersion function, Z(ζe): the imag-
inary component of it in the ζe � 1 limit. Now we can evaluate equation 4.26.
We have

ne1 =
eφ1

kBTe
n0

[
1 + i

√
π
ω − ω∗
k‖VTe

]
(4.32)
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We now have a nice expression for the kinetic electron response function in
the slab geometry relevant to drift waves. The imaginary component is key,
because it tells us that our waves will have some imaginary component, the
sign of which depends on ω − ω∗ where ω∗ is related to the strength of the
density gradient. We would expect that if the density gradient is weak, we will
see damping of the wave due to kinetic effects, but if the density gradient is
sufficiently strong we’ll see an exponential growth of the perturbation. Let’s see
how this plays out.

We have the ion response function which we calculated using the fluid
method. We could calculate the kinetic response function of the ions, but what
we have for the electrons is sufficient for our purposes. (why don’t we calculate
ion response function?) The ion response function is

ni1 = n0
eφ1

kBTe

[ω∗
ω
− bs +

k2
‖c

2
s

2ω2

]
where

ω∗ ≡ −
kykBTe
miΩi

∂(lnn0)

∂x

Plugging these into Gauss’s law, and ignoring the −k2φ1 term as before, we
have

ω∗
ω
− bs +

k2
‖c

2
s

2ω2
− 1 = i

√
π
ω∗ − ω
k‖VTe

(4.33)

We can solve this equation perturbatively. To lowest order (assuming k‖

and ky are small, so we have large-λ waves and bs and
k2‖c

2
s

ω2 are negligible) then
we have, to lowest order, ω ≈ ω∗. Now to the next-lowest order, we can write
ω ≈ ω∗ + δω where δω has both real and imaginary components. Equation 4.33
becomes

ω∗
ω∗ + δω

− bs +
k2
‖c

2
s

2(ω∗ + δω)2
− 1 = −i

√
π

δω

k‖VTe

1− δω

ω∗
− 1− bs +

k2
‖c

2
s

2ω2
∗

(1− 2
δω

ω∗
) = −i

√
π

δω

k‖VTe

δω

ω∗
=
(k2
‖c

2
s

2ω2
∗
− bs

)/(
1 +

k2
‖c

2
s

2ω2
∗
− i
√
πω∗

k‖VTe
)

Expanding the denominator, we have

δω

ω∗
= (

k2
‖c

2
s

2ω2
∗
− bs)(1−

k2
‖c

2
s

2ω2
∗

+
i
√
πω∗

k‖VTe
) (4.34)

so
δωr
ω∗
≈ (

k2
‖c

2
s

2ω2
∗
− bs) (4.35)
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δωi
ω∗
≈ (

k2
‖c

2
s

2ω2
∗
− bs)

√
πω∗

k‖VTe
(4.36)

Now remember: our time-dependence was assumed to be e−iωt. So a positive
imaginary component corresponds to an exponentially growing solution. Todo

4.1.4 Electromagnetic Drift Waves

Question: what does this have to do with finite beta? Question: what does A‖
and A⊥ have to do with anything?

Todo: explain why we care
Let’s look at figure ?? as we have throughout section 4.1, but not suppose

we allow the possibility that our magnetic field is perturbed to first-order. This
means, of course, that ~B = B0ẑ + ~B1. Since ~B = ~∇ × ~A, then ~B1 = ~∇ × ~A1.
Now, we choose to ignore compressional effects associated with ~A⊥, and instead
focus on A‖. (why? explain?) We also have

~B1 = ~∇×Az ẑ =
∂Az
∂y

x̂ = ikyAzx̂

where we’ve used the fact that first-order quantities go as eikzz+ikyy−iωt,

and we’ve assumed that any change in x is small so that
∂A‖
∂x ≈ 0. Since we’re

allowing for time-varying induced magnetic fields, then the ∂ ~A
∂t gives us induced

electric fields as well.

~E = −~∇φ1 −
∂ ~A

∂t
= −~∇φ1 + iωAz ẑ (4.37)

The unit vector in the direction of the magnetic field, b̂, now no longer points
only in the z-direction.

b̂ =
B0√

B2
0 +B2

1

ẑ +
~B1√

B2
0 +B2

1

≈ ẑ +
~B1

B0

Otherwise, we’re looking at essentially the same drift wave. This means
that, in order to solve for the dispersion relation of the wave, we’re again going
to find the electron and ion response functions, plug them into Gauss’s law,
and solve for ω as a function of k. The essential nature of the wave doesn’t
change: electromagnetic drift waves are still primarily electrostatic waves where
the electrons are isothermal and the ions are adiabatic. Question: does using
gauss’s law to solve for wave dispersion relation imply wave is electrostatic?
what does it imply? We’re going to first solve for the response function of the
electrons, using the drift-kinetic equation, and secondly solve for the response
function of the ions. The drift-kinetic equation for electrons is

∂f

∂t
+ ~vGC · ~∇f −

e

m
E‖

∂f

∂v‖
= 0 (4.38)
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Now we linearize this equation, as we did in equation 4.18, except ~vGC has
a parallel component along the ~B1 direction, and not just the ẑ-direction. As
before, we linearize around an Maxwellian distribution fM , and solve for f1, the
first-order perturbation to f . We treat f1, ~B1, and E‖ as first order quantities.
Linearizing and keeping only the terms to first order gives us

∂f1

∂t
+ vz ẑ · ~∇f1 + vz

~B1

B0
· ~∇fM −

~∇φ1 × ẑ
B0

· ~∇fM −
e

m
Ez

∂fM
∂z

= 0 (4.39)

The ~E × ~B drift term doesn’t have the induced- ~E component because we
have set ~A = Az ẑ, so crossing this with ẑ gives us zero. However, the E‖ term
does include this term, so we need to consider it. From equation 4.37, we have

Ez = −ikzφ1 + iωAz ẑ = −ikz(φ1 −
Azω

kz
)

For simplicity, we’re going to define

ψ ≡ Azω

kz

so that
Ez = −ikz(φ1 − ψ)

Our usual expression for the gradient of a Maxwellian distribution in a slab
geometry is

~∇fM =
[∂ lnn0

∂x
+
∂ lnTe
∂x

( E

kBTe
− 3

2

)]
fM x̂

Here, however, we’re going to assume that ∂Te
∂x = 0 for simplicity.45 This

means that
~∇fM =

∂ lnn0

∂x
fM x̂

We also need to calculate the derivative of a Maxwellian distribution with

respect to vz. Since a Maxwellian goes as e
−
m(v2x+v2y+v2z)

2kBTe , this becomes

∂fM
∂vz

= − mvz
kBTe

fM

Lastly, we Fourier transform in space and time. After all these manipula-
tions, our linearized drift-kinetic equation (equation 4.39) becomes

(−iω+ikzvz)f1 =
(
−ikyvz

Az
B0

+i
kyφ1

B0

)∂ lnn0

∂x
fM+

e

kBTe
ikzvz(φ1−ψ) (4.40)

Using ψ = Azω
kz

, we can rewrite the first term inside the parentheses as

−i ky
B0

kzvz
ω

ψ

45We’re going to consider the effects of a temperature gradient later in these notes.
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We can also use the definition

ω∗ = −kykBTe
eB0

∂ lnn0

∂x
(4.41)

to rewrite the term with the parentheses as

−iω∗
e

kBTe

(
φ1 −

kzvz
ω

ψ
)
fM

With these manipulations, our drift-kinetic equation becomes

(−iω+ ikzvz)f1 = −iω∗
e

kBTe

(
φ1−

kzvz
ω

ψ
)
fM +

e

kBTe
ikzvz(φ1−ψ)fM (4.42)

Cancelling the i’s, multiplying by −1, and dividing by ω − kzvz, equation
4.40 becomes

f1 =
e

kBTe

[−kzvz(φ1 − ψ)

ω − kzvz
+
ω∗(φ1 − kzvz

ω ψ)

ω − kzvz

]
fM

f1 =
e

kBTe

[(ω∗ − kzvz
ω − kzvz

)
φ1 +

(kzvz(1− ω∗
ω )

ω − kzvz

)
ψ
]
fM (4.43)

This isn’t a particularly nice expression, but we can simplify it somewhat
if we expand in the limit ω

kz|vz| � 1. Of course, vz is the phase-space variable

in f , so it can take on any possible value. However, when we integrate f1 over
velocity to get n1, |vz| is typically of order VTe. We also have that ω

kz
∼ vph,

the phase velocity of the wave. This means that our expansion is like taking
vph
VTe
� 1, which makes sense because the phase velocity of drift waves is much

slower than the thermal velocity of electrons. With this approximation, we can
simplify equation 4.43.

f1 =
e

kBTe

[(1− ω∗
kzvz

1− ω
kzvz

)
φ1 −

( 1− ω∗
ω

1− ω
kzvz

)
ψ
]
fM

f1 ≈
e

kBTe

[
φ1 − (1− ω∗

ω
)ψ +

ω

kzvz
[(1− ω∗

kzvz
)φ1 − (1− ω∗

ω
)ψ]
]
fM

f1 ≈
e

kBTe

[
φ1 − (1− ω∗

ω
)ψ
]
fM (4.44)

If we integrate this over velocity space, we have the electron response func-
tion n1e.

n1e = n0
e

kBT

[
φ1 − (1− ω∗

ω
)ψ
]

(4.45)

Great, so we have the electron response function. Now we need to calculate
the ion response function. As before, we’ll use a fluid model to calculate the ion
response function. Notice that this approach parallels the approached used in
section 4.1.1, where we used a kinetic model for the electrons but a fluid model
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for the ions. The difference here is that our electric field is no longer purely
electrostatic, but has an electromagnetic component as well. Once again, we
assume the ions are cold, and ignore the effects of pressure. Our linearized fluid
equations for the ions are

∂n1

∂t
+
∂n0

∂x
v1x + n0(~∇ · ~u1) (4.46)

∂~u1

∂t
=

e

m
(−~∇φ1 −

∂ ~A1

∂t
+ ~u1 × ~B0) (4.47)

Compare equations 4.46 and 4.47 with equations 4.6 and 4.7. As you can
see, the only difference is with the electric field term in the momentum equation,

where we now have an added −∂ ~A∂t . Notice that the first-order change in the

magnetic field, ~B1, doesn’t show up in the momentum equation because we
don’t have a zeroth-order velocity term. Now, we can solve these equations
as we did before, first taking the Fourier transform and then solving for ~u1

using the linearized momentum equation and plugging that into the linearized
continuity equation. By components, the linearized momentum equation is

−iωu1x =
e

mi
(u1yB0)

−iωu1y =
e

mi
(−ikyφ1 − uxB0)

−iωu1z =
e

mi
(−ikzφ1 − iωAz)

The x and y equations are the same as in the original drift wave case, but
the z-equation has a term with Az. This means we can rearrange for the x
and y velocities exactly as we did before. Only the z-velocity is different than
before. This gives us to get

u1x =
1

1− ω2/Ω2
i

−iky
B0

φ1 (4.48)

u1y =
1

1− ω2/Ω2
i

−ωeky
miΩ2

i

φ1 (4.49)

u1z =
e

mi
(
kz
ω
φ1 +Az) (4.50)

As before, since ω/Ωi � 1, we can replace the 1 − ω2/Ω2
i with 1. We can

now plug these velocities into the linearized continuity equation. However, this
requires solving for ~∇ · ~u1 first.

~∇ · ~u1 = −iω(
ek2
yφ1

miΩ2
i

− ek2
z

mi
(
φ1

ω2
+

Az
kzω

))

~∇ · ~u1 = −iω e

kBTe

kBTe
mi

(
k2
y

Ω2
i

φ1 −
k2
z

ω2
(φ1 − ψ))
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~∇ · ~u1 = −iω e

kBTe

[
bsφ1 −

k2
zc

2
s

2ω2
(φ1 − ψ)

]
where c2s = 2kBTe

mi
, ρs = cs

Ωi
, and bs = 1

2k
2
yρ

2
s. Notice that this is the same

as equation 4.12, except we have an additional ψ term, and of course we’ve
replaced k‖ with kz because the z-direction is no longer necessarily parallel to
the magnetic field.

Having solved for ~∇ · ~u1, we can plug the velocities into our linearized con-
tinuity equation, equation 4.46.

−iωn1 − i
1

n0

∂n0

∂x

ekyn0φ1

miΩi
− iωn0

e

kBTe

[
bsφ1 −

k2
zc

2
s

2ω2
(φ1 − ψ)

]
= 0

n1

n0
=

e

kBTe
[
ω∗
ω
φ1 − bsφ1 +

k2
zc

2
s

2ω2
(φ1 − ψ)]

where we’ve used

ω∗ = −kykBTe
eB0

∂ lnn0

∂x

Rearranging slightly, we have our ion response function for electromagnetic
drift waves. (n1

n0

)
i

=
e

kBTe

[
(
ω∗
ω
− bs)φ1 +

k2
zc

2
s

2ω2
(φ1 − ψ)

]
(4.51)

Great, so we have our electron and ion response functions. Todo: summarize
what we’ve done, and what we’re going to. Next, we plug our electron and ion
response functions into Gauss’s law, and solve for the dispersion relation.

~∇φ1 = −
∑
σ

qσnσ1

k2
yφ1 +k2

zφ1 = n0
e2

kBTe

[
φ1− (1− ω∗

ω
)ψ
]
−n0

e2

kBTe

[
(
ω∗
ω
−bs)φ1 +

k2
zc

2
s

2ω2
(φ1−ψ)

]
(k2
y+k2

z)
kBTe
n0e2

φ1 = k2λ2
Deφ1 =

[
φ1−(1− ω∗

ω
)ψ
]
−
[
(
ω∗
ω
−bs)φ1 +

k2
zc

2
s

2ω2
(φ1−ψ)

]
Since k2λ2

De =
λ2
De

λ2 , and for drift waves we expect to see large-wavelength
modes, then the LHS of Gauss’s law is much less than 1, and we can neglect it
relative to the RHS.46 The RHS of the above expression gives us our dispersion
relation.

(1− ω∗
ω

+ bs −
k2
zc

2
s

2ω2
)φ1 + (−1 +

ω∗
ω

+
k2
zc

2
s

2ω2
)ψ = 0 (4.52)

This is great, and we’d be able to solve for ω(k), except we have a problem:
we don’t know what ψ is. Of course, it’s defined as ψ = Azω

kz
, but we still don’t

46This is the same approximation we saw in an earlier section, I just wanted to explicitly
write it out again so we remembered how it was done.
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know anything about Az. So let’s try to solve for Az. Todo: explain what we’re
gonna do. To start, we have Ampere’s law

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t

Using ~B = ~∇× ~A, and assuming our time-dependence is slow so that we can
ignore the displacement current, this becomes

~∇× (~∇× ~A) = −~∇2 ~A+ ~∇(~∇ · ~A) = µ0
~J

If we work in Coulomb gauge, then this becomes

−~∇2 ~A = µ0
~J

The z-component of this equation is

(k2
y + k2

z)Az = µ0Jz

which gives

Az =
µ0Jz
k2
y + k2

z

ψ =
µ0Jzω

kz(k2
y + k2

z)
(4.53)

Great, so we have an expression for ψ! So we can plug this into equation
4.51, and solve for the dispersion relation, right? Well, yes and no. We could,
but we still don’t have an expression for Jz. You might be frustrated with
how many steps it is taking to solve this stupid dispersion relation. I certainly
am. But I promise, this is the last thing we’ll need to do to get our dispersion
relation. We can see the light at the end of the tunnel. To reach that light, we
again use Ampere’s law

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t

We’re neglecting the displacement current, because the phase velocity of the
time-change of E is slow relative to the speed of light. This gives us

~∇× ~B = µ0
~J

which we can take the divergence of to get

~∇ · ~J = 0

ikzJz + ~∇ · ~J⊥ = 0

Jz =
i

kz
~∇ · ~J⊥ (4.54)
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So to solve for Jz, we need to solve for ~∇ · ~J⊥. However, we can solve for
~J⊥, using

~J⊥ = en0(~u⊥i − ~u⊥e) (4.55)

Fortunately, we already know what ~u⊥i and ~u⊥e are. For the isothermal
electrons, the perpendicular velocity is just the drift velocity,

~u⊥e = −~∇φ× b̂/B0 = −ikyφ1/B0x̂

For the adiabatic ions, we’ve calculated their velocities using the fluid equa-
tions already. Using u1x and u1y, we have

~u⊥i =
−ikyφ1

B0
x̂− ωekyφ1

miΩ2
i

ŷ

As you can see, the x̂ terms from the ions and the electrons are the same, so
these cancel when we calculate the perpendicular current. This leaves us only
with a y-component of the perpendicular current, which gives us

~J⊥ = −n0φ1(
ωe2ky
miΩ2

i

)ŷ

~∇ · ~J⊥ = −iω
n0e

2k2
y

miΩ2
i

φ1

Using equation 4.54, we have for Jz

Jz =
ωn0e

2k2
y

kzmiΩ2
i

φ1

Using Ωi = eB0

mi
, this becomes

Jz =
ωn0mik

2
y

kzB2
0

φ1 (4.56)

Great! We’ve reached the light at the end of the tunnel. Now we can plug
our result into equation 4.53, and then plug that result into equation 4.52 to get
an equation for ω. Plugging our result into equation 4.53, we have

ψ =
µ0ω

kz(k2
y + k2

z)

ωn0mik
2
y

kzB2
0

φ1 =
µ0n0mi

B2
0

ω2

k2
z

φ1 =
ω2

v2
Ak

2
z

φ1 (4.57)

where we’ve used the approximation that k2
y+k2

z ≈ k2
y, which is true because

(why? todo: fix this). Plugging this result into equation 4.52, we have

(1− ω∗
ω

+ bs −
k2
zc

2
s

2ω2
)φ1 + (−1 +

ω∗
ω

+
k2
zc

2
s

2ω2
)
ω2

v2
Ak

2
z

φ1 = 0

75



The factors of 1 and ω∗
ω cancel, and we are left with

bs = (1− ω∗
ω
− k2

zc
2
s

2ω2
)(1− ω2

v2
Ak

2
z

)

Todo: solve this dispersion relation
Todo: recap everything that we just did
Todo: explain why it matters

4.2 Nonlocal Analysis

In section 4.1, we looked at a slab geometry where we had a magnetic field in
the z-direction, and a density gradient in the x-direction. In this geometry, our
equilibrium was accomplished because the pressure gradient due to the density
gardient was balanced by the diamagnetic current, crossed with the magnetic
field. In this geometry, the z-direction represented the toroidal direction, the
x-direction represented the radial direction, and the y-direction represented the
poloidal direction. Crucially, this geometry had symmetry in the y/poloidal
direction, and no magnetic field in this direction. This simplified our analysis
greatly. However, it’s not so realistic when we’re considering a real-life tokamak,
for a number of reasons. One of the reasons this geometry isn’t realistic is that
there isn’t a poloidal magnetic field. In this section, we look at the effect of
adding a poloidal magnetic field to the slab geometry.

Todo: figure 4nl
If we want to investigate the effects of a poloidal magnetic field, we’re going

to have to give the magnetic field a component in the y-direction. If the toroidal
current is being carried diffusely across the poloidal cross-section of the tokamak,
then we expect the poloidal magnetic field to grow like ∼ r.47 This means that
in our slab geometry, we should let the y-component of the magnetic field be
proportional to x. This means that

~B = B0(ẑ +
x

Ls
ŷ) (4.58)

where Ls is some length scale. So our slab geometry has a more realistic
magnetic field. It also has a density gradient, again in the x-direction as before.
I’ve illustrated this geometry in figure ??. Since we’re using this geometry to
investigate a tokamak, we can expect that x

Ls
� 1, so the poloidal magnetic

field is much smaller than the toroidal magnetic field. Of course, we still haven’t
solved for Ls. The trick to doing so is to realize that when x = Ls, then we
have BT = BP . What this tells us is that physically, Ls is the radial distance
at which the poloidal field would be the same as the toroidal field. Bill calls
it the “magnetic shear length”, because it tells us the lengthscale at which the
purely toroidal magnetic field at the center of the poloidal cross-section of the

47We can convince ourselves of this with a simple Ampere’s law calculation, letting
∮
~B ·d~l =

µ0Iencl.
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tokamak has become sheared at 45◦. For an illustration of this effect, see figure
??.

Todo: figure 4tokamakShear
We can calculate Ls by remembering that q = dζ

dθ . If we follow a field line

in a tokamak a distance ds, then we have dζ ≈ BT
B

ds
R , and dθ ≈ BP

B
ds
r , so

q ≈ dζ

dθ
=

BT r

BPR
(4.59)

For our slab geometry here, BT = B0, and at r = Ls then BP = B0. This
allows us to solve for Ls, using the above expression.

q ≈ Ls
R

Ls ≈ qR ≈ qR0

question: why does this in the notes have a q′ and a r in it?
Great, so we have our new geometry we’re going to be investigating. Re-

member that in this new geometry, z corresponds to the toroidal direction, x
to the radial direction, and y to the poloidal direction. Since our magnetic field
line is no longer pointing along ẑ, then we have

b̂ =
Bz√

B2
z +B2

y

ẑ +
By√

B2
z +B2

y

ŷ

This means that a derivative parallel to the field line becomes

b̂ · ~∇ =
Bz√

B2
z +B2

y

∂

∂z
+

By√
B2
z +B2

y

∂

∂y

Since b̂ points perpendicular to the field line, and ~∇ → i~k when we Fourier
transform, then we have that b̂ · ~∇ = k‖.

However, in tokamak coordinates, this looks a bit different, mainly because
we can assume that the toroidal magnetic field is significantly stronger than the
poloidal magnetic field. This means that b̂ ≈ ζ̂ + BP

BT
θ̂ The gradient in toroidal

coordinates is
Todo: write gradient in toroidal coordinates equation
which means that

b̂ · ~∇ =
BP
BT

1

rh

∂

∂θ
+

1

R0h

∂

∂ζ

where (using equation 4.59) BP
BT
≈ r

qR0
.48 This gives

48Note that this make sense intuitively. q is a measure of more of less how many times a
field line goes around toroidally before it goes around poloidally. So if q is large, we would
expect that the poloidal magnetic field is not very strong compared to the toroidal magnetic
field, which this expression suggests.
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b̂ · ~∇ =
1

qR

∂

∂θ
+

1

R0h

∂

∂ζ
(4.60)

Now suppose we have some drift wave in a tokamak which is an (n,m) mode.
Mathematically, this means that the perturbation of some quantity φ (here I
will let φ be the electric potential and φ1 be the perturbation to φ) goes as

φ1 = Re(φ1(r)einζ+imθ−iωt)

Physically, a (n,m) mode means that the perturbation of whatever quantity
we’re interested in (here that quantity is electric potential φ, but it could be
density n, temperature T , displacement ξ, etc) has n complete cycles in the
toroidal direction and m complete cycles in the poloidal direction. An n = 0
mode means that there is no toroidal variation in the perturbation of that
quantity, while an n = 1 mode means we have one maximum and one minimum
as we go around toroidally. Similarly, an m = 0 mode means that there is no
poloidal variation of the perturbation. An m = 1 mode means that there is
one poloidal maximum and one poloidal minimum as we go around poloidally.49

Make sure you can visualize what (n = 1,m = 1) and (n = 1,m = 2) modes
look like.

For a drift wave which is in an (n,m) mode, we have (using equation 4.60)

|k‖| ≈ |
1

φ1
b̂ · ~∇φ1|

k‖ ≈
n

R
+

m

qR
(4.61)

Todo: justify intuitively why this is true
Question: where does minus sign come from?
This is a nice result, because it tells us that if m = −qn, then we have

k‖ = 0. Actually, this is a pretty intuitive result. Todo: draw figure where
q = 2, m = −2, and n = 1. Todo: explain the figure. Todo: what is a rational
surface?

Suppose our drift wave is propogating at r = r0 along a rational (n,m)
surface. While k‖ = 0 at this rational surface at r0, it is true that q changes
slightly as a function of r. This means that if we want to calculate k‖ near
r = r0, we can Taylor expand equation 4.61 around r = r0. This gives us

k‖(r) ≈
−m
Rq2

dq

dr
(r − r0)

Since m = −qn on the rational surface, this becomes

k‖ ≈
n

Rq

dq

dr
(r − r0)

49Actually, all of this is a bit complicated than I’m making it because we have oscillation
of the poloidal direction at the same time as the toroidal direction, so it doesn’t really make
sense to talk about a poloidal or toroidal maximum in the first place because for a fixed ζ, we
have variation in θ, and for fixed θ we have variation in ζ. But I think you get the idea.
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We also have that (using the gradient in toroidal coordinates)

kθ = | 1

φ1

1

rh

∂

∂θ
φ1| =

m

rh

Plugging this into the expression for k‖, we have

k‖ = −kθ
rq′

q

1

Rq
(r − r0) = −kθrq

′

q

1

Ls
(r − r0) (4.62)

We can applying this expression to the slab geometry. Before we do so, we’ll
have to solve for q in the slab geometry.

q ≈ BT r

BpR
≈ B0x

B0
x
Ls
R0h

=
Ls
R

dq

dr
≈ d

dr
(
Ls
R0

(1− r cos θ

R0
)) ≈ −Ls

R2
0

With q and q′ solved for, we have (using 4.62)

k‖ = kyx
Ls
R2

0

R

Ls

1

Ls
(x)

Todo: understand everything that just happened
When we looked at drift waves in a slab geometry without a “poloidal” mag-

netic field in the y-direction, we found the electron and ion responses, plugged
those into Gauss’s law, and solved for the dispersion relation. We found the elec-
tron response first using the Boltzmann equation for a system in equilibrium,
and later using the drift-kinetic equation to determine the kinetic destabiliza-
tion of drift waves due to the density gradient. We calculated the ion response
function using the fluid equations, assuming Ti = 0. We linearized the fluid
equations, assumed an exponential dependence eikzz+ikyy−iωt, and solved for
n1i.

Now that we have a poloidal magnetic field, we are going to take a similar
approach. We’re going to use a kinetic approach to solving the electron response
function, and a zero-temperature fluid approach to solving the ion response
function. Now, it turns out that the electron response function is the same as
without the additional magnetic field.

n1e = n0
eφ1

kBTe
(1− iδ) (4.63)

where δ =
√
π ω−ω∗k‖VTe

Question: how do we know the electron response func-

tion will be the same? It’s the ion response function which gets modified. Let’s
solve for the ion response function, so that we can plug that into Gauss’s law
and solve for the dispersion relation. As usual, we have the linearized continuity
equation and linearized momentum equation for the ions.

∂n1

∂t
+
∂n0

∂x
u1x + n0(~∇ · ~u1) = 0 (4.64)
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∂~u1

∂t
=

e

mi
(−~∇φ1 + ~u1 × ~B) (4.65)

The difference between these equations and ones we’ve looked at previously
is that ~B has a zeroth-order poloidal magnetic field. However, we’re going to
look at a different exponential dependence. Instead of allowing for ky and kz,
we’re going to take the limit kz → 0. Question: physically what does this limit
mean? In this limit, our exponential dependence becomes eikyy−iωt. With this
exponential dependence, we are ready to solve for the ion response function.
Using the continuity equation, we have

−iωn1 = −∂n0

∂x
u1x − n0(~∇ · ~u1) = n0

1

Ln
u1x − n0(~∇ · ~u1)

where we’ve used our usual definition for Ln, Ln = − 1
n0

∂n0

∂x . Solving this
gives

n1

n0
=

i

ω

[u1x

Ln
− (~∇ · ~u1)

]
(4.66)

Great, so (as usual) if we can solve for ~u1 then we have our ion response
function. As usual, we’ll do this using the continuity equation, writing the
continuity equation by components, taking the Fourier transform and solving
for each component of velocity. Remember, our magnetic field is

~B = B0ẑ +B0
x

Ls
ŷ

so by components, the continuity equation is

−iωu1x =
e

mi
(−∂φ1

∂x
+ u1yB0 − u1z

x

Ls
B0)

−iωu1y =
e

mi
(−ikyφ1 − u1xB0)

−iωu1z =
e

mi
(u1x

x

Ls
B0)

We can solve these equations with some nifty algebra. Here we go!50

u1x = i
eB0

ωmi
(− 1

B0

∂φ1

∂x
+ u1y − u1z

x

Ls
) (4.67)

u1y =
eB0

ωmi
(
ky
B0

φ1 − iu1x) (4.68)

u1z = i
eB0

ωmi

x

Ls
u1x (4.69)

Plugging the expressions for u1y and u1z into u1x, we have

50A la Mario.
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u1x = i
Ω2
i

ω2
(−miω

eB2
0

∂φ1

∂x
+
ky
B0

φ1 − iu1x − i
x2

L2
s

u1x)

u1x(1− Ω2
i

ω2
(1 +

x2

L2
s

)) = −iΩi
ω

1

B0

∂φ1

∂x
+ i

Ω2
i

ω2

ky
B0

φ1

u1x
Ω2
i

ω2
(1− ω2

Ω2
i

+
x2

L2
s

) = i
Ωi
ω

1

B0

∂φ1

∂x
− iΩ

2
i

ω2

ky
B0

φ1

u1x(1− ω2

Ω2
i

+
x2

L2
s

) = i
ωe

miΩ2
i

∂φ1

∂x
− i eky

miΩi
φ1 (4.70)

Now, the terms in parentheses on the LHS is approximately just 1. This is
because we’re looking in the limit x/Ls � 1, and since we’re investigating drift
waves we have ω

Ωi
� 1. When we’re solving for u1x, to first-order we can just

ignore the term in parentheses, and treat it as 1. However, it turns out that
when we solve for u1y, the terms to zeroth and first order in the parameters ω

Ωi
and x

Ls
will go to zero, and we’re going to have to worry about the second-order

terms. It turns out that ∂φ1

∂x is also small, because the variation in x is slow, so
we treat it as first-order as well. So keeping terms to second order, we have

u1x ≈
[
i
ωe

miΩ2
i

∂φ1

∂x
− i eky

miΩi
φ1(1 +

ω2

Ω2
i

− x2

L2
s

)
]

Great, so we have the x-component of the first-order velocity. Now we need
to do some more algebra to get u1y and u1z. Fortunately, we already have
expressions for these variables in terms of u1x. These are equations 4.68 and
4.69. This gives us, keeping terms to second order

u1y =
Ωi
ω

[ eky
miΩi

φ1 +
( ωe

miΩ2
i

∂φ1

∂x
− eky
miΩi

φ1(1 +
ω2

Ω2
i

− x2

L2
s

)
)]

u1y =
e

miΩi

∂φ1

∂x
− ekyω

miΩ2
i

φ1 +
eky
miω

x2

L2
s

φ1 (4.71)

u1z =
Ωi
ω

x

Ls

[
− ωe

miΩ2
i

∂φ1

∂x
+

eky
miΩi

φ1

]
(4.72)

Great, so equations 4.70,51 4.71, and 4.72 give us ~u1, which we can use to
plug into equation 4.66 to solve for the ion response function. First, though, we
need to work out ~∇ · ~u1. Since we’ve taken the limit kz → 0, then ∂

∂z = 0. This
means that we only have to worry about the x and y-components of ~u1.

~∇ · ~u1 = i
ωe

miΩ2
i

∂2φ1

∂x2
− i eky

miΩi

∂φ1

∂x
+ i

eky
miΩi

∂φ1

∂x
− i

ek2
yω

miΩ2
i

φ1 + i
ek2
y

miω

x2

L2
s

φ1

51This equation has the term in parentheses on the LHS set to 1, because the two terms are
small as we discussed before. The only reason we didn’t set this to 1 outright was because we
needed the second-order terms to get u1y to work out.
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The second and third terms cancel to give us

~∇ · ~u1 = i
ωe

miΩ2
i

∂2φ1

∂x2
+ i

ek2
y

miω
(
x2

L2
s

− ω2

Ω2
i

)φ1 (4.73)

We plug this equation into equation 4.66, to get(n1

n0

)
i

=
[ eky
ωmiΩiLn

φ1 −
e

miΩ2
iLn

∂φ1

∂x
+

e

miΩ2
i

∂2φ1

∂x2
+

ek2
y

miω2
(
x2

L2
s

− ω2

Ω2
i

)φ1

]
(n1

n0

)
i

= − 1

Ln

e

miΩi

[ 1

Ωi

∂φ1

∂x
− ky
ω
φ1

]
+

e

miΩ2
i

[ ∂2

∂x2
− k2

y

]
φ1 +

e

mi

k2
y

ω2

x2

L2
s

φ1

We can simplify our response function further, using our definitions ω∗ =
kykBTe
eB0Ln

, c2s = 2kbTe
mi

, and ρs = cs
Ωi

. It turns out that we can also neglect the term

− 1
Ln

∂φ1

∂x relative to the term ∂2φ1

∂x2 , because Question: huh? Whats with the
note? This gives us(n1

n0

)
i

=
e

kBTe

[
kBTeky
ωLNeB0

φ1 +
kBTe
miΩ2

i

[ ∂2

∂x2
− k2

y

]
φ1 +

kBTe
mi

k2
yx

2

ω2L2
s

]
(n1

n0

)
i

=
e

kBTe

[
ω∗
ω

+
ρ2
s

2

[ ∂2

∂x2
− k2

y

]
+
c2sk

2
yx

2

2ω2L2
s

]
φ1 (4.74)

We have our non-local ion response function. Before we go any further, let’s
step back for a second and make sure we understand what we’ve done so far.
Todo: summarize. Now, notice what the difference between the radially local
and radially non-local response functions is. The radially local response function
is (equation 4.13)

n1

n0
=

e

kBTe

[ω∗
ω
− bs +

k2
‖c

2
s

2ω2

]
φ1

This is the same as the radially non-local ion response function (equation

4.74), except we’ve taken bsφ1 → ρ2s
2 (k2

y − ∂2

∂x2 )φ1 and k‖ →
kyx
Ls

. Now that we
have the ion and electron response functions, we can plug them into Gauss’s
law to get the dispersion relation. Remember, the electron response function
is given by equation 4.63. As usual, we apply the quasineutrality condition for

drift waves, so we ignore the −k2φ1 term to get (cancelling the factor of e2n0

kBTe
)

[ω∗
ω
− bs +

ρ2
s

2

[ ∂2

∂x2
− k2

y

]
+
c2sk

2
yx

2

2ω2L2
s

− 1 + iδ
]
φ1 = 0 (4.75)

Great, so we just have to solve this equation to get our dispersion relation.
On the face of it, this looks like a complicated equation we might not be able
to solve. However, it turns out that this equation can be written as the Weber
equation

[A
∂2

∂x2
+B − Cx2]φ = 0 (4.76)
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where A, B, and C are constants equal to

A =
ρ2
s

2

B = −1 + iδ −
ρ2
sk

2
y

2
+
ω∗
ω

C = −
c2sk

2
yx

2

2ω2L2
s

It turns out the solutions to this equation are the Hermite functions.52 This
means that can write the solution for φ1 as

φ1 =
∑
l

alHl(σ
1
2x) exp (−σx2/2) (4.77)

It turns out that
σ = ±

√
C/2A

Aσ(2l + 1) = B

Let’s show that this is true. First, we need to know a couple properties of
Hermite polynomials. We have that

H ′n(x) = 2nHn−1(x)

We also have that

Hn+1(x) = 2xHn(x)−H ′n(x)

which means
H ′n(x) = 2xHn(x)−Hn+1(x)

Let’s look at one particular l for φ1, and find ∂2φ1

∂x2 for that φ1. With this
result, we’ll use the Weber equation (equation 4.76) to match the coefficients
A, B, and C4 for each l. This will help us todo. We can rewrite our solution
for φ1 in terms of the variable y = σ

1
2x.

φ1 =
∑
l

alHl(y) exp (−y2)

This also means that ∂
∂x = ∂y

∂x
∂
∂y = σ

1
2
∂
∂y . Solving for a single-l component

of φ1, we have

∂φ1

∂y
= −yφ1 +H ′l(y)e−y

2

52These are the same Hermite functions as are used for the solution of the quantum har-
monic oscillator. This makes sense, because the Weber equation is in the same form as the
Schrodinger equation for the quantum harmonic oscillator. So we expect the form of the
solutions to be the same.
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∂2φ1

∂y2
= −φ1 + y2φ− yφ′1 − yH ′l(y)e−y

2

+H ′′l (y)e−y
2

∂2φ1

∂y2
= −φ1 + 2y2φ1 − 2yH ′l(y)e−y

2

+
∂

∂y
(2lHn−1(y))e−y

2

∂2φ1

∂y2
= −φ1 + 2y2φ1 − 4ylHl−1(y)e−y

2

+ (4ylHn−1(y)− 2lHn(y))e−y
2

∂2φ1

∂y2
= −φ1 + 2y2φ1 − 2lφ1

∂2φ1

∂y2
= 2y2φ1 − (2l + 1)φ1

∂2φ1

∂x2
= 2σ2x2φ1 − σ(2l + 1)φ1 (4.78)

Note that this was solved for a single-l mode. Plugging this result into the
Weber equation, we have (again for a single-l)

(2σ2A− C)x2φ1 + (B − σ(2l + 1)A)φ1

This tells us that

σ = ±
√

C

2A
(4.79)

B = σ(2l + 1)A (4.80)

Question: factor of 2
Now, there are two possible signs for σ. It turns out that the correct choice

of sign depends on the boundary conditions on the Weber equation. Since for
x→∞, φ1 → 0, then we need to choose the negative value for σ. Question: but
it’s imaginary, so why do we need to choose negative to prevent exponentially
growing/shrinking?

Question: WKB stuff
Question: all of last page? huh?

4.3 Ion Temperature Gradient Mode

Todo: summarize physics
To solve for the ion temperature gradient dispersion relation, we’re going to

follow the approach we’ve been using throughout this chapter to solve for the
dispersion relation of various drift waves. We’ll solve for the ion and electron
response functions, plug those into Gauss’s law, and use the fact that a drift
wave is a slow wave to ignore the −k2φ1 term in Gauss’s law. What makes this
wave different from the other drift waves we’ve been looking at is that now there
is a temperature gradient in x in addition to the density gradient in x. While
before we’ve set η = ∂ lnTi0

∂ lnn0
to zero, now we’re going to keep it and consider

the effects of having a finite temperature gradient. The slab geometry we’re
considering is shown in figure ?? We’re not going to consider the kinetic effects
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of the isothermal electrons, and simply use Boltzmann’s equation to solve for
the electron response function. To get the ion response function, we’re going to
use a fluid model, allowing for the possibility that there is a first-order pressure
perturbation P1. Let’s start with the electrons.

Todo: make figure 4itgSlab
Since drift waves are in the frequency range

VTi �
ω

k‖
� VTe

then the thermal velocity of electrons is much faster than the phase velocity
of the wave. This means that electrons are isothermal, and we can treat them
as a population in thermal equilibrium. For a system in thermal equilibrium,
the states are populated with the Boltzmann distribution. The Boltzmann
distribution tells us that the probability a particle is in a state s is related to
the energy of the state s, and proportional to an exponential factor e−E/kBT .
For a plasma in equilibrium, the probability of a particle of charge q being at a
certain point in space as opposed to any other point in space is proportional to
e−qφ/kBT , where qφ is the electric potential energy of the particle. If we call n0

the density of particles where φ = 0, then we have (for electrons, where q = −e)

ne = n0e
eφ

kBTe

This is just the Boltzmann distribution, applied to a plasma in equilbrium.
For plasmas where the thermal energy is much greater than the electric potential
energy,53 then we can expand the exponential in the small parameter eφ

kBTe
to

get

ne = n0(1 +
eφ

kBTe
)

This tells us that the first-order density perturbation for isothermal electrons
is, ignoring kinetic effects,

n1e = n0
eφ1

kBTe
(4.81)

This is the electron response function. It’s the same electron response func-
tion we used in the original drift wave calculation, where we treated the elec-
trons as isothermal and ignored kinetic effects. Now let’s calculate the ion
response function, using a fluid model. Since we’re working with the slab ge-
ometry in figure ??, we have a straight magnetic field in the z-direction and a
zeroth-order pressure P0(x). We’ll assume that our first-order quantities go like
eik‖z+ikyy−iωt, which allows us to replace any derivatives with respect to t, z,
or y with the respective variable. As usual, we’re going to use the continuity
equation to get an equation for n1 in terms of the first-order velocity ~u1, and the
momentum equation to solve for the first-order velocity ~u1. In the momentum
equation, we’re actually going to ignore any first-order variations in pressure
perpendicular to the magnetic field. (Question: why?) This is equivalent to

53Question: does this have anything to do with strongly coupled plasmas?
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assuming that in the direction perpendicular to the magnetic field, the only
velocity particles have is their guiding center drift velocity. We’ll see that if we
ignore any variation in the first-order pressure perpendicular to the magnetic
field (mathematically, this means ~∇P1 = ik‖P1ẑ), using the fluid model is equiv-
alent to using a single-particle model for the perpendicular velocities. Either
of these approaches will allow us to solve for u1x and u1y. However, to solve
for u‖, we’ll need to allow for the possibility of a first-order pressure variation
along the magnetic field. After we Fourier transform the parallel component of
the momentum equation, we’ll have an equation for u‖ in terms of P1. To solve
for P1, we’ll need to use the linearized, Fourier transformed energy equation for
adiabatic processes. Once we have the components of ~u1 solved for, we can plug
them into the continuity equation to solve for the ion response function. Our
linearized continuity equation for the ions is

∂n1

∂t
+
∂n0

∂x
u1x + n0(~∇ · ~u1) = 0 (4.82)

Taking the Fourier transform, this becomes

−iωn1 = −n0u1x
∂ lnn0

∂x
− n0(~∇ · ~u1)

(n1

n0

)
i

=
i

ω

[u1x

Ln
− ~∇ · ~u1

]
(4.83)

Great, so as promised we’ve used the continuity equation to solve for n1 as
a function of ~u1. Now we need to use the momentum equation to solve for ~u1.
The linearized momentum equation for the ions is

mi
∂~u1

∂t
= e(−~∇φ1 + ~u1 × ~B)− 1

n0

~∇P1 (4.84)

Remember, we’re assuming that ~∇P1 = ik‖P1ẑ (no perpendicular varia-
tion in the first-order density perturbation) because (???). The perpendicular
components of this equation are, after Fourier transforming,

−iωu1x =
eB

mi
u1y

−iωu1y = − e

mi
ikyφ1 −

eB

mi
u1x

Solving for u1x and u1y,

u1x = i
Ωi
ω
u1y

u1y =
Ωi
ω

kyφ1

B
− iΩi

ω
u1x

u1y =
Ωi
ω

kyφ1

B
+

Ω2
i

ω2
u1y
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u1y(1− Ω2
i

ω2
) =

Ωi
ω

kyφ1

B

u1y(1− ω2

Ω2
i

) = − ω

Ωi

kyφ1

B

Since the frequency of drift waves is so much slower than the ion cyclotron
frequency, the term on parenthese on the LHS is just equal to 1, and we have

u1y = − ω

Ωi

kyφ1

B
(4.85)

Plugging this in to our expression for u1x, we have

u1x = −iky
φ1

B
(4.86)

Great, so we have our perpendicular velocities u1y and u1x. Notice, however,
that these velocities are identical to the guiding-center drift velocities due to the
~E × ~B drift and the polarization drift. The ~E × ~B drift is

~vE =
−~∇φ1 × ~B

B2
= −ikyφ1

1

B
x̂

which is exactly u1x, given by equation 4.86. From GPP1, you may remem-
ber the polarization drift as

~vp =
1

ΩB

d~E⊥
dt

In our slab geometry, the polarization drift for the ions is

~vp =
−iω
ΩiB

~E⊥ = −ωkyφ1

ΩiB
ŷ

which is exactly u1y, given by equation 4.85. Note that there is no curva-

ture of the magnetic field, so we wouldn’t expect to see any ~∇B or curvature
drift terms. Indeed, we don’t. We only see drifts due to ~E. The conclusion is
that if we ignore variations in the first-order pressure perturbation perpendicu-
lar to the magnetic field, the perpendicular fluid velocity ~u1 is the same as the
single-particle drifts ~vp and ~vE . Nevertheless, we’ve solved for the perpendicular
velocities. However, we’ll need to use the parallel component of the momentum
equation to solve for u‖. It is in this parallel component of the momentum equa-
tion where we’ll have to worry about the effects of having finite ion temperature.
The parallel component is

mi

∂u‖

∂t
= −e~∇‖φ1 −

1

n0

~∇P1

Taking the Fourier transform of this equation, we have

−iωmiu‖ = −ik‖eφ1 −
ik‖

n0
P1
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Cancelling the factor of −i and solving for u‖, we have

u‖ =
k‖

ωmi
(eφ1 +

P1

n0
)

This can be rewritten in terms of c2s, and P0 = n0kBTi.

u‖ =
k‖

ω

kBTe
mi

[ e

kBTe
φ1 +

Ti
Te

P1

P0

]
u‖ =

k‖c
2
s

2ω

[ eφ1

kBTe
+
Ti
Te

P1

P0

]
(4.87)

We’ve solved for the parallel first-order velocity perturbation due to a density
and temperature gradient using the momentum equation. However, we’ve solved
for it in terms of the first-order pressure variation, P1, which we don’t know yet.
However, we can use the energy equation (also called the equation of state) to
solve for P1.

d

dt

( P
nγ

)
= 0 (4.88)

As we’ve done with the continuity equation and the momentum equation,
we linearize the energy equation and Fourier transform to give us an equation
for the first-order variable, in this case P1. Setting P = P0 + P1, n = n0 + n1,
and remembering that d

dt = ∂
∂t + ~u · ~∇, this becomes

d

dt

(P1

nγ0
+
P0

nγ0
(1− γ n1

n0
)
)

= 0

Since P0 and n0 do not change with time, and the fluid perpendicular velocity
~u⊥ is a first-order quantity (since it’s proportional to φ1) this becomes

1

nγ0

∂P1

∂t
+ ~u · ~∇

(P0

nγ0

)
− γ P0

nγ0

1

n0

∂n1

∂t
= 0

1

nγ0

∂P1

∂t
+

1

nγ0
~u · ~∇P0 − γ

P0

nγ0

1

n0
~u · ~∇n0 − γ

P0

nγ0

1

n0

∂n1

∂t
= 0

Multiplying by nγ0 , and using the linearized continuity equation

− 1

n0

∂n1

∂t
− 1

n0
~u1 · ~∇n0 = ~∇ · ~u1

our energy equation becomes

∂P1

∂t
+ ~u · ~∇P0 + γP0

~∇ · ~u1 = 0

Relative to the parallel velocity, the perpendicular fluid velocity (which is
just the guiding-center drift velocity of individual particles as we’ve established)

is small, so we can say that ~∇ · ~u1 ≈ ~∇‖u‖. (is this right?) We also have that

88



~∇P0 points in the x-direction, since both the density and temperature gradients
are in the x-direction. This means that ~u1 · ~∇P0 = u1x

∂P0

∂x , where u1x is the
~E × ~B drift of the guiding center of particles. Our linearized energy equation is
therefore

∂P1

∂t
+ u1x

∂P0

∂x
+ γP0

~∇‖u‖ = 0 (4.89)

Taking the Fourier transform, this becomes

−iωP1 + iγP0k‖u‖ − iky
φ1

B

∂P0

∂x
= 0

P1 =
γP0

ω
k‖u‖ −

kyφ1

ωB

∂P0

∂x

P1

P0
=
γ

ω
k‖u‖ −

kyφ1

ωB

1

P0

∂P0

∂x
(4.90)

Now, since P0 = n0kBTi,

1

P0

∂P0

∂x
=

1

Ti

∂Ti
∂x

+
1

n0

∂n0

∂x
=

1

n0

∂n0

∂x
(1 +

n0

Ti

∂Ti
∂x

(∂n0

∂x

)−1

) = − 1

Ln
(1 + ηi)

where ηi ≡ ∂ lnTi
∂ lnn0

and Ln ≡ − 1
n0

∂n0

∂x . Note that these are both variables
we’ve seen before, except now they are showing up in a different context. Plug-
ging this result into equation 4.90 gives us

P1

P0
=
γ

ω
k‖u‖ +

ky(1 + ηi)φ1

ωBLn

Using ω∗i = −kykBTieBLn
and ω∗pi = ω∗i(1+η) (where the p stands for pressure),

this becomes
P1

P0
=
γ

ω
k‖u‖ −

ω∗pi
ω

e

kBTe

Te
Ti
φ1

Plugging this into equation 4.87 gives us our parallel velocity u‖.

u‖ =
k‖c

2
s

2ω

[ eφ1

kBTe

(
1− ω∗pi

ω

)
+
γTi
ωTe

k‖u‖

]

u‖ =
k‖c

2
s

2ω

[ eφ1

kBTe

(
1− ω∗pi

ω

)]
/
[
1− γ

k2
‖V

2
Ti

2ω2

]
(4.91)

We’ve now solved for each of the components of ~u1. This means that we can
solve for ~∇ · ~u1, and plug that into the equation for first-order ion density n1,
equation 4.83. We have

~∇ · ~u1 =
∂u1y

∂y
+
∂u‖

∂z
= −i

ωk2
yφ1

ΩiB
+ i

k2
‖c

2
s

2ω

[ eφ1

kBTe

(
1− ω∗pi

ω

)]
/
[
1− γ

k2
‖V

2
Ti

2ω2

]
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where V 2
Ti = 2kBTi

mi
. Now, since VTe � ω

k‖
� VTi for drift waves, we can

eliminate the
[
1−γ k

2
‖V

2
Ti

2ω2

]
term in favor of just 1. Plugging this into our equation

(4.83) for the ion density perturbation, we have(n1

n0

)
i

=
i

ω

[−ikyφ1

BLn
+ i

ωk2
yφ1

ΩiB
− i

k2
‖c

2
s

2ω

[ eφ1

kBTe

(
1− ω∗pi

ω

)]]
(n1

n0

)
i

=
e

kBTe

[kykBTe
ωeBLn

−
k2
ykBTe

miΩ2
i

+
k2
‖c

2
s

2ω2

(
1− ω∗pi

ω

)]
φ1

(n1

n0

)
i

=
e

kBTe

[ω∗e
ω
− bs +

k2
‖c

2
s

2ω2

(
1− ω∗pi

ω

)]
φ1 (4.92)

where bs = 1
2ρ

2
sk

2
y, ρ2

s = cs
Ωi

and ω∗e =
kykBTe
eBLn

. Equation 4.92 is our ion
response function. We’ve already calculated the electron response function,
so using Gauss’s law and the quasineutrality condition, we get (cancelling the

factor of n0e
2

kBTe
) [ω∗e

ω
− bs +

k2
‖c

2
s

2ω2

(
1− ω∗pi

ω

)
− 1
]
φ1 (4.93)

This gives us our dispersion relation for the ion temperature gradient modes.
Notice that if we didn’t take into account ion temperature effects, we would re-
cover the dispersion relation for drift waves because we could set ω∗pi = 0.
Remember how we solved this equation in the case that ω∗pi = 0: we solved

the equation perturbatively. First, we took bs = 0 and
k2‖c

2
s

2ω2 = 0 which we jus-
tified on the assumption that the wavelength of the drift wave is very long, so
k is small. This gave us ω ≈ ω∗e as a zeroth-order solution to the dispersion
relation. Equation 4.93, on the other hand, doesn’t lend itself to a nice per-
turbative solution when ω∗pi is not small. However, for sufficiently large ω∗pi,
one of the solutions to this equation has an imaginary component which is pos-
itive imaginary, which (because we’ve assumed exponential dependence e−iωt)
implies that there is an exponentially growing mode. (is this statement totally
true?) Rather than try to solve this equation perturbatively, let’s solve it in the

case where η � 1, so much so that
ω∗pi
ω � 1 and

∣∣∣k2‖c2s2ω2 ω∗pi

∣∣∣ � |ω∗e|. We also

set bS = 0 as usual, which corresponds to small ky. In this case, the only terms

we need to consider are the −1 and the −k
2
‖c

2
sω∗pi

2ω3 terms. This gives us

−
k2
‖c

2
sω∗pi

2ω3
− 1 = 0

ω3 = −
k2
‖c

2
Sω∗pi

2

Since ω∗pi ≡ ω∗i(1 + η) and

ω∗pi ≡ −
kykBTi
eBLn

< 0
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then
ω3 > 0

This means that ω must have some imaginary component. The solution is

ω = (|ω∗pi|k2
‖c

2
s/2)1/3(

√
3

2
i− 1

2
) (4.94)

We see that (
√

3
2 i−

1
2 )3 = 1 as required, if we multiply it out.

(

√
3

2
i− 1

2
)(

√
3

2
i− 1

2
)(

√
3

2
i− 1

2
) = (

√
3

2
i− 1

2
)(−1

2
−
√

3

2
i) = 1

Question: how do we know it’s not just 1 instead of
√

3i/2− 1
2?

Todo: write conclusion
Todo: figure out everything on the last page

4.4 Effect of Turbulent Fluctuations on Transport
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